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ABSTRACT

Many real world data naturally arrive as rapid paced and virtually unboundedstreams. Examples

of such streams include network traffic at a router, events observed by a sensor network, accesses to

a web server and transactional updates to a large database. Such streaming data need to be monitored

online to collect traffic statistics, detect trends and anomalies, tune system performance and help make

business decisions. However, because of the large size and rapid pace of the data, as well as the online

processing requirement, conventional data processing methods, such as storing the data in a database

and issuing offline SQL queries thereafter, are not feasible. Data stream processing is a new diagram

of massive data set processing and creates new challenges inthe algorithm design and implementation.

In this thesis, we considertime-decayeddata aggregation for data streams, where the importance

or contribution of each data element decays over time, sincerecent data are usually considered of

more importance in applications, and therefore are given heavier weights. We design small space data

structures and algorithms for maintaining fundamental aggregates of the streams if it is possible and

otherwise show large space lower bounds.We consider the data aggregation over a robust data stream

model calledasynchronous data stream, motivated by the streaming data transmitted in distributed

systems, including computer networks, where the asynchrony in the data transmission is inevitable. In

asynchronous data stream, the arrival order of the data elements at the receiver side is not necessarily

the same as the order in which the data elements were generated. Asynchronous data stream is a

robuster and generalized model of the previous synchronousdata stream model.

In summary, this thesis presents the following results:

• We formalize the model of asynchronous data stream and the notion of timestamp sliding win-

dow. We propose the first small spacesketchfor summarizing the data elements over timestamp

sliding windows of multiple geographically distributed asynchronous data streams. The sketch

can return accuracy guaranteed estimates for basic aggregates, such as: Sum, Median and Quan-
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tiles.

• We design the first small space sketch for general purpose network streaming data aggregation.

The sketch has the following properties that make it useful in communication-efficient aggre-

gation in distributed streaming scenarios: (1) The sketch can handle multiple geographically

distributed asynchronous data streams. (2) The sketch is duplicate-insensitive, i.e. reinsertions

of the same data will not affect the sketch, and hence the estimates of aggregates. (3) The sketch

is also time-decaying, so that the weight of each data element summarized in the sketch decreases

over time. (4) The sketch returns accuracy guaranteed estimates for a variety of core aggregates,

including the sum, median, quantiles, frequent elements and selectivity.

• We conduct a comprehensive study on the time-decayedcorrelateddata aggregation over asyn-

chronous data streams. For each class of time decay function, we either propose space efficient

algorithms or show large space lower bounds. We not only closes the open problem of correlated

data aggregation under sliding windows decay, but also presents negative results for the case of

exponential decay, which however is highly used in the non-correlated scenarios.

• We propose theforward decaymodel to simplify the time-decayed data stream aggregationand

sampling. Forward decay captures a variety of usual decay functions (or calledbackward decay),

such as exponential decay. We design efficient algorithms for data aggregation and sampling

under the forward decay model, and show that they are easy to implement scalably.
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CHAPTER 1. Introduction

Many real world data naturally arrive asstreams. Examples include network traffic at a router,

events observed by the sensor motes of a wireless sensor network, webpage requests to a web server

and transactional updates to a large database. Contributedby the advancement of modern computer

and Internet technologies, such streaming data has became highly paced and massive, compared to

the ability of computing, storing and transmitting that thedata processor can provide. For example,

an OC48 link has its standard transmission rate at 2.5 Gbits per second, much more than the storage

capacity of a normal computer, and the flowing data are even too quick to take a scan of it; In the

recently emerging wireless sensor network applications, events observed by the battery powered tiny

sensor mote can quickly overwhelm the mote’s memory.

However, these streaming data need to be monitored to collect traffic statistics, detect trends and

anomalies, tune system performance and even help make business decisions. In some applications, re-

altime queries and answers are even demanded. For example, asearch engine may want to continuously

maintain a list of hot searching keywords mined from the massive streams of searching queries that the

search engine has received from the users. However, becauseof the large size and rapid pace of the

data as well as the demands for realtime queries and answers,conventional data processing methods,

such as storing the data in a database and issuing offline SQL queries, are not feasible.

The goal in data stream processing research is to answer questions like: Given such amount of

time and space, and a data steam or multiple streams arrivingat such a pace, what query about the

streams can we answer ? If not, can we give an approximate answer for the query ? How accurate the

approximate answer can we guarantee ? Or can we show that the problem is inherently unsolvable in a

streaming fashion using such limited space and time budget ?The typical challenges in the algorithms

design and implementation for the data stream processing are as follows.

1. The algorithms must use small workspace. Because of the limited memory space and the virtually
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unbounded stream size, the space cost of the algorithm usually must be poly-logarithmic in the

size of the streams and sometimes even independent from the stream size. A small workspace

also help in processing stream elements more quickly by reducing the time cost in scanning and

searching through the data structures.

2. The algorithm must process each stream element quickly inorder to keep up with the pace of the

stream.

3. Constrained by the small space budget, one-pass processing of the stream is required, since we

are incapable to store the majority of the stream and therefore have no chance to visit old data

elements. One-pass processing is also needed to support continuous queries.

4. Queries of interest can be submitted at anytime during thestream processing. Answers should be

returned immediately regarding the data that have been received so far. Answers for the queries

can comprise a new stream and can be the input of another stream processor.

5. In many scenarios, the sacrifice of fast processing and small workspace is to lose the accuracy

in the answers for queries. Although approximate answers are acceptable in many applications,

error in these approximations need to be well bounded.

1.1 Asynchronous Data Streams

In this thesis, we particularly focus onasynchronous data streams(Definition 1.3.1), motivated by

the data streams transmitted in distributed systems including networks. In distributed stream process-

ing, it is necessary to deal with the inherent asynchrony in the network through which data is being

transmitted. Nodes often have to process composite data streams that consist of interleaved data from

multiple data sources. One consequence of the network asynchrony is that in such composite data

streams, the arrival order of the stream elements is not necessarily the same as the order in which the

elements were generated. We call such a data stream as an asynchronous data stream.

Asynchronous data streams are inevitable anytime two streams, sayA andB, fuse with each other

and the data processing has to be done on the stream formed by the interleaving ofA andB. Even

if individual streamsA or B are not inherently asynchronous, when the streams are fused, the stream
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could become asynchronous. For example, if the network delay in receiving streamB is greater than

the delay in receiving elements in streamA, then the the stream processor may consistently observe

elements with earlier timestamps fromB after elements with more recent timestamps fromA.

In asynchronous data streams the order of “recency” of the data may not be preserved. The notion

of recency can be captured with the help of a timestamp associated with the stream element. The greater

the timestamp of an element is, the more recent the element is. Asynchronous stream is a more natural

model for data streams transmitted in distributed systems than the synchronous stream model, and it is

therefore robuster for distributed data stream monitoring.

1.2 Distributed Data Streams Processing Diagram

In applications involving distributed data sources, such as content distribution, intranet monitoring,

and sensor data processing, no single node observes all data, yet aggregates should be computed over

the union of the data observed at all the nodes. Therefore, itis necessary to answer aggregate queries

for the union of all the streams distributively. A naive approach to solve such problems is to send all

streams to a single aggregator. However, this approach is too costly, since there is a communication

and energy cost for every data item in every stream. Thus, thedata streams have to be combined in

a more efficient way in order to minimize the use of network resources. This is critical especially in

sensor networks where nodes are typically battery operateddevices.

In our approach, we place an aggregator for each stream. Eachaggregator maintains a small space

sketchsummarizing its local stream. All the sketches for local streams can be combined distributively

to create the sketch for the union of streams (Figure2.1). The sketch for the union can be used to

answer queries regarding the union of streams. The sketchesof local streams will be combined in

a compact and lossless way, i.e., the space complexity and accuracy guarantee of the sketch for the

union is the same as those for local streams. Also, the sketchfor the union can be constructed on

demand, whenever new queries are issued. Unlike previous work (42; 41; 57) that considered the

synchronous model on distributed streams, this thesis considers aggregate computation over distributed

streams under asynchronous arrival.
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1.3 Data Stream Model

We model a stream asR= 〈e1,e2, . . . ,en〉, whereei is received earlier thanej for any pair ofi and

j, i < j. Note thaten is the most recently received element andn can be infinitely large. Each stream

elementei , 1≤ i ≤ n, is a tuple(vi ,wi, ti , idi), where the entries are defined as follows:

• vi is a positive integer value

• wi is a weight associated with the value

• ti is the integer timestamp, tagged at the timeei was created.

• idi is a unique id forei .

This abstraction captures a wide variety of cases that can beencoded in this form. It is deliberately

general; users can choose to assign values to these fields to suit their needs. For example, if the desired

aggregate is the median temperature reading across all (distinct) observations, this can be achieved

by setting all weights towi = 1 and the valuesvi to be actual temperatures observed. The unique

observation ididi can be formed as the concatenation of the unique sensor id andtime of observation

(assuming there is only one reading per instant). We shall give more examples in Chapter3.

We consider asynchronous data stream. In other words, it is possible that in streamR an element

tagged with a larger (and thus newer) timestamp is received earlier than an element of a smaller (and

thus older) timestamp. More formally, we define an asynchronous data stream as follows.

Definition 1.3.1(Asynchronous Data Stream). Stream R is an asynchronous data stream if for any pair

of i and j,1≤ i < j ≤ n, it is possible that ti > t j .

Our stream model also allows the possibility that the same observation appears multiple times in

the stream, with the same id, value, weight and timestamp preserved across multiple appearances. Such

occurrences exist in real network environment due to the multi-path routing to increase the chance of

data delivery, yet only one copy of such repeated occurrences should be considered while evaluating

aggregates over the stream. Note that our model allows different elements of the stream to have different

ids, but the same values, weights and/or timestamps — in sucha case, they will be considered separately

in computing the aggregates.
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1.4 Time Decay

In most evolving settings, recent data is more reliable or more important than older data. We should

therefore weigh newer stream elements (with larger timestamps) more heavily than older ones. This

can be formalized in a variety of ways: we may only consider data elements that fall within asliding

windowof recent time (say, the last hour), and ignore (assign zero weight to) any that are older (35);

or, more generally, use an arbitrary function that assigns aweight to each data element as a function of

its initial weight and age (21).

Theageof an element is defined as the elapsed time since the element was created. Thus, the age

of element(v,w, t, id) at timec is c− t. A decay function takes the initial weight and the age of an

element and returns itsdecayed weight.

Definition 1.4.1. A decay function f(w,x) takes two parameters, the weight w≥ 0, and an integral age

x≥ 0, and should satisfy the following conditions. (1) f(w,x) ≥ 0 for all w,x; (2) if w1 > w2, then

f (w1,x) ≥ f (w2,x); (3) if x1 > x2, then f(w,x1)≤ f (w,x2).

The decayed weight of an element(v,w, t, id) at timec≥ t is f (w,c− t). In Chapter5, we will also

call such decay function as backward decay, since the value of it depends on the element’s age which

is computed by looking from the current time backward to the element’s timestamp.

1.4.1 Decomposable Decay Functions

Decomposable decay is a class of decay functions and is popularly used in applications.

Definition 1.4.2. A decay function f(w,x) is a decomposable decay function if it can be written in the

form f(w,x) = w ·g(x) for some function g().

Note that the conditions on a decay functionf (w,x) naturally impose the following conditions on

g(): (1) g(x) ≥ 0 for all x; (2) if x1 < x2, theng(x1)≥ g(x2). In the rest of this thesis, we will also call

g(x) decay function if the context is clear. The following are example decomposable decay functions.

No decay. The trivial functiong(x) ≡ 1 weights all ages equally. This means that the time-decayed

model captures prior work on non-decayed aggregates.
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Sliding window. Given a “window size” parameter,W, the functiong(x) = 1 for x≤W andg(x) = 0

for x >W captures the common sliding window semantics—only items whose age is less than or equal

toW are considered.

Polynomial decay. Given a constanta > 0, the polynomial decay function is defined asg(x) =

(x+1)−a.

Exponential decay.Given a constantα > 0, the exponential decay function is defined asg(x) = 2−αx.

Exponential decay with a different base can also be written in this form, sincea−λx = 2−λ log2(a)x.

Super-exponential decay.A decay functiong(x) is super-exponential, if there exist constantsσ > 1

andc≥ 0, such that for everyx≥ c, f (x)/ f (x+ 1) ≥ σ . Examples of such decay functions include:

(1) polyexponential decay(21): g(x) = (x+ 1)k2−αx/k! wherek > 0, andα > 0 are constants. (2)

g(x) = 2−αxβ
, whereα > 0 andβ > 1.

Converging decay. A decay functiong(x) is a converging decay function ifg(x+ 1)/g(x) is non-

decreasing withx. Intuitively, the relative weights of elements with different timestamps under a

converging decay function get closer to each other as time goes by. As pointed out by Cohen and

Strauss (21), this is an intuitive property of a time-decay function in several applications. Many popular

decay functions, such as exponential decay and polynomial decay, are converging decay. Converging

decay also includes the no decay case:g(x) ≡ 1.

Finite decay. A decay function is defined to be a finite decay function with age limit N, if there exists

N ≥ 0 such that forx > N, g(x) = 0, and forx≤ N, g(x) > 0. Examples of finite decay include (1)

sliding window decay, where the age limitN is the window size. (2) Chordal decay with an age limit

N−1 (21): g(x) = 1−x/N if 0 ≤ x≤N andg(x) = 0 otherwise. Obviously, no finite decay function is

a converging decay function, sinceg(N+1)/g(N) = 0 while g(N)/g(N−1) > 0.

1.5 Thesis Contributions

In this thesis, we focus on time-decayed asynchronous data stream processing. We design time

and space efficient algorithms for data aggregations in the setting of distributed data streams. We also

show large space lower bounds for problems that are inherently hard. The following are the main

contributions of this thesis.



www.manaraa.com

7

• We formalize the model of asynchronous data stream and the notion of timestamp sliding win-

dow. We propose the first small spacesketchfor summarizing the data elements over timestamp

sliding windows of multiple geographically distributed asynchronous data streams. The sketch

can return accuracy guaranteed estimates for basic aggregates, such as: Sum, Median and Quan-

tiles. (Chapter2)

• We propose the first small space sketch for general purpose network data aggregation. The

sketch has the following properties that make it useful in communication-efficient aggregation

in distributed streaming scenarios: (1) The sketch can handle asynchronous data streams. (2)

The sketch is duplicate-insensitive, i.e. reinsertions ofthe same data will not affect the sketch,

and hence the estimates of aggregates. (3) The sketch is alsotime-decaying, so that the weight

of each data element summarized in the sketch decreases overtime according to any arbitrary

user-specified decay function. (4) The sketch can give provably approximate guarantees for a

variety of core aggregates of data, including the sum, median, quantiles, frequent elements and

selectivity. (5) The size of the sketch and the time taken to update it are both polylogarithmic in

the size of the relevant data. (6) Multiple sketches computed over distributed data streams can be

combined without loss of accuracy. (Chapter3)

• We conduct a comprehensive study on the time-decayedcorrelateddata aggregation over asyn-

chronous data streams. For each class of time decay function, we either propose space efficient

algorithms or show large space lower bounds. We not only closes the open problem of correlated

data aggregation under sliding windows decay, but also presents negative results for the case un-

der exponential decay, which however is highly used in the non-correlated scenarios. (Chapter4)

• We propose theforward decaymodel to simplify the time-decayed data stream aggregationand

sampling. Forward decay captures a variety of usual decay functions (or calledbackward decay),

such as exponential decay and polynomial decay. We design efficient algorithms for data aggre-

gation and sampling under the forward decay model, and show that they are easy to implement

scalably. (Chapter5)
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1.6 Roadmap

In Chapter2, we consider asynchronous data stream processing over sliding windows and de-

sign small space sketches for data aggregation. This sketchis further extended in Chapter3 for more

general purpose network streaming data aggregation. We then extend the techniques in processing

asynchronous data stream for the correlated data stream aggregation in Chapter4. In Chapter5, we

present forward decay, a new time decay model to simplify thetime-decayed data stream aggregation

and sampling. We conclude this thesis with several open problems in Chapter6.

1.7 Declarations

Publications. The work presented in this thesis has been published in the following computer science

conference proceedings and journals. The majority of this thesis derives from these publications.

• The work of Chapter2 has been published in (75) and (79).

• The work of Chapter3 has been published in (30) and (32).

• The work of Chapter4 has been published in (31) and (29).

• The work of Chapter5 has been published in (28).

My Contributions. Like many thesis work, my thesis research is a collaborativework with my major

professor Srikanta Tirthapura and other researchers from universities and research laboratories. Here I

clarify my contributions in these collaborations.

• The proposal of the asynchronous data stream model, presented in Chapter2, is due to Srikanta

Tirthapura. He also proposed the idea of sampling approach for solving the problem. I finished

the technical proofs under his guidance.

• The proposal of designing a general purpose sketch for network streaming data aggregation,

presented in Chapter3, is due to Srikanta Tirthapura and myself. The main algorithmic ideas and

proofs for solving the problem as well as the experimental study are due to myself.

• The proposal of the time-decayed correlated data aggregation, presented in Chapter4, is due

to Srikanta Tirthapura and myself. Most of the algorithms and lower bound proofs are due to

myself. Graham Cormode improved the space lower bound for the exponential decay based

correlated sum based on my discovery of the lower bound and using my proof idea.
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• The work presented in Chapter5 was done during my visit to AT&T Shannon Laboratory as an

intern in Summer 2008. The idea of forward decay is due to the colleagues at AT&T. I studied the

sampling techniques under the forward decay model, as well as part of the experimental study.
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CHAPTER 2. Sliding Windows Decay Based Processing

In this chapter, we study the problem of maintaining sketches for the data elements in the sliding

windows over an asynchronous data stream. The sketches can give provably accurate estimates of two

basic aggregates, the sum and the median, of the stream of numbers in the sliding windows. The space

taken by the sketches, the time needed for querying the sketches, and the time for inserting new ele-

ments into the sketches are all polylogarithmic with respect to the maximum window size. The sketches

can be easily combined in a lossless and compact way, making them useful for aggregating distributed

data streams. Previous works on sketching recent elements of a data stream have all considered the

more restrictive scenario of synchronous streams, where the observed order of data is the same as the

time order in which the data was generated.

2.1 Introduction

Beyond the asynchronous data stream model motivated by the streaming data transmitted in dis-

tributed systems as we described in Section1.1, in many applications, only the most recent elements

in the data stream are important in computing aggregates andstatistics, while the old ones are not. For

example, in a stream of stock market data, a software may needto track the moving average of the price

of a stock over all observations made in the last hour. In network monitoring, it is useful to monitor the

volume of traffic destined to a given node during the most recent window of time. In sensor networks,

only the most recent sensed data might be relevant, for example, measurements of seismic activity in

the past few minutes. Motivated by such applications, therehas been much work (7; 38; 42; 10; 35; 57)

on designing algorithms for maintaining aggregates over asliding window(Section1.4) of the most

recent elements of a data stream. So far, all work on maintaining aggregates over a sliding window has

assumed synchronous streams where the arrival order of the data in a stream is the same as the time
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order in which the data was generated. However, this assumption may not be realistic in distributed

systems, as we have explained in Section1.1.

The challenge with maintaining aggregates over a sliding timestamp window is that the data within

the window can be very large and it may be infeasible to store the data in the workspace of the ag-

gregator. To overcome this limitation, a fundamental technique for computing aggregates is for the

aggregator to keep a small spacesketchthat contains a summary representation of all the data that has

arrived within the window. Typically, the size of the sketchis much smaller than the size of the data

within the window. Usually, the goal is to construct sketches whose size is polylogarithmic in the size

of the data within the window. The sketch is constructed in a way that it enables the efficient computa-

tion of aggregates. Since the sketch cannot keep complete information of the streams within the small

space, there is an associatedrelative error with the answer provided by the sketch, in relation to the

exact value of the aggregate. The size of the sketch depends on this relative error.

Data Stream and Goal.Recall that each elementei in streamR is a tuple(vi ,wi , ti , idi) (Section1.3). In

this chapter, we consider a a projection of the streamRover the dimensions of thevalueandtimestamp.

In the projected stream, each elementdi is a tuple(vi , ti). The goal for the aggregator who is receiving

streamR is to maintain small space sketches that can continuously return answers for queries of the

following form: return an aggregate (say, the sum or the average) of all elements in the current sliding

window, e.g., of those received stream elements whose timestamps are within[c−w,c], wherec is the

clock current time at any instant (Section1.4) andw is the size of the sliding window. When the context

is clear in this chapter, we will still useR to denote the projected stream, e.g. letR= d1,d2, . . . ,dn, and

use the term “sliding timestamp window” to refer to all received items that have timestamps in the

range[c−w,c].

2.1.1 Contributions

First, we give algorithms for computing the sum and median ofthe sliding timestamp window

of the asynchronous streamR that is being observed by a single aggregator. We then consider the

distributed case, where we give an algorithm that combines the sketches produced by the aggregators,

each of which is observing and sketching a local stream. In the discussion below, letW a bound on the

maximum window size.
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2.1.1.1 Sum

Our first sketching algorithm estimates the sum of all integers in streamR which are within any

recent timestamp window of sizew ≤W, i.e. V = ∑{(v,t)∈R|c−w≤t≤c} v. The algorithm maintains a

sketch using small space, that can be updated quickly when a new element arrives, and can give a

provably good estimate for the sum when asked. We will use thenotion of an(ε ,δ )-estimator to

quantify the quality of answers returned by the algorithm.

Definition 2.1.1. For parameters0 < ε < 1 and 0 < δ < 1, an (ε ,δ )-estimator for a number Y is a

random variable X such thatPr[|X−Y|> εY] < δ . The parameterε is called the relative error andδ

is called the failure probability.

Our algorithm for the sum has the following performance guarantees.

• For anyw≤W specified by the user at the time of the query, the sketch returns an(ε ,δ )-estimator

of V. The value ofw, the window size does not need to be known when the stream is being

observed and sketched. OnlyW, an upper bound onw needs to be known in advance. In other

words, our sketch comprises information abouteverytimestamp window in the stream whose

right endpoint is the current timec, and whose width is less than or equal toW.

• Space used by the sketch isO
((

1/ε2
)
· log(1/δ ) · logVmax·σ

)
, whereVmax is an upper bound on

the value of the sumV, σ is the number of bits required to store an input element(v, t), ε is the

desired relative error, andδ is the desired upper bound on the failure probability.

• The time complexity for processing an element isO(log log(1/δ )+ log(1/ε)).

• Time taken to process a query for the sum isO
((

1/ε2
)
· logVmax· log(1/δ )

)

An important special case of the sum of positive integers is the problem of maintaining the number

of data items within the window, and is calledbasic counting(35; 42). Our algorithm solves basic

counting immediately by takingv = 1 for every data item.

2.1.1.2 Median

The next aggregate is the approximate median. Givenw≤W specified by the user, we present

an algorithm that can return an approximate median of the setRw = {(v, t) ∈ R|c−w≤ t ≤ c}. An
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(ε ,δ )-approximate median is defined as follows.

Definition 2.1.2. For 0 < ε < 1/2 and0 < δ < 1, an (ε ,δ )-approximate median of a totally ordered

set S is a random variable Z such that the rank of Z in S is between (1/2− ε)|S| and (1/2+ ε)|S|

with probability at least1−δ . The parameterε is called the relative error andδ is called the failure

probability.

Our algorithm has the following performance guarantees.

• For anyw≤W specified by the user at the time of query, the sketch returns an (ε ,δ )-approximate

median of the setRw. Similar to the sum, the sketch can answer queries about any timestamp

window whose right endpoint isc and whose width is less than or equal toW.

• Space used by the sketch isO
((

1/ε2
)

log(1/δ ) · logNmax·σ
)
, whereNmax is an upper bound on

the number of elements inRw, σ is the number of bits required to store an input element(v, t), ε

is the desired relative error, andδ is the desired upper bound on the failure probability.

• The expected time taken to process each item isO(log log(1/δ )+ log(1/ε)).

• Time taken to process a query for the median isO
(
log logNmax+

(
1/ε2

)
log(1/δ )

)
.

Note that the above guarantees for the sum and the median are only with respect to data that has

been received by the aggregator and is within the timestamp window. There may be elements in the

stream that have timestamps within the current window, but have not yet arrived at the aggregator, and

these are not considered as part of the data on which the sum orthe median are computed.

2.1.1.3 Union of Sketches

The sketches produced by our sum and median algorithms can beeasily merged to form new

sketches. This merging step can be performed repeatedly in ahierarchical manner, using a tree of

aggregators. More precisely, given a sketch of streamA and a sketch for streamB, it is easy to obtain

a sketch of the union of streamsA∪B. A sketch forA (B) consists of a series of random samples

from the input streamA (B). The combined sketch consists of a series of random samplesfrom the

streamA∪B, which can be computed using the individual random samples fromA andB. For the sum,
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we show that if each sketch forA andB can individually yield an(ε ,δ )-estimator, then the combined

sketch can yield an(ε ,δ )-estimator for the sum of elements inA∪B. A similar result holds for the

median. The space taken for the sketch of the union is no more than the space needed for the sketch of

a single stream. Thus, when combining sketches, the new sketch takes bounded space and the relative

error is controlled. The cost of transmitting these sketches is small, and this enables the distributed

computation of aggregates over the union of many data streams with low communication and space

overhead.

2.1.2 Related Work

Datar et al. (35) considered basic counting over a sliding window of elements in a data stream

under synchronous arrivals. They presented an algorithm that is based on a data structure called the

exponential histogram, which can give an approximate answer for basic counting, and also presented

reductions from other aggregates, such as sum, andℓp norms, to basic counting. For a sliding window

size of maximum sizeW, and anε relative error, the space taken by their algorithm for basiccounting

is O(1
ε log2W), and the time taken to process each element isO(logW) worst case, butO(1) amor-

tized. Their algorithm for the sum of elements within the sliding window has the space complexity

O(1
ε logW(logW + logm)), and worst case time complexity ofO(logW + logm) wherem is an upper

bound on the value of an item. We briefly describe the exponential histogram for basic counting. The

exponential histogram divides the relevant window of the stream (the lastW elements) into buckets of

sizes 1,2,4, . . .. There are multiple buckets of each size (the number of buckets of a particular size de-

pends on the desired accuracy). The most recent elements aregrouped into buckets of size 1, elements

that arrived a little earlier in time are grouped into buckets of size 2, and even earlier elements are

grouped into buckets of size 4, and so on. In a synchronous stream, elements always arrive at in order

of timestamps, and hence a newly arrived element is always assigned into a bucket of size 1. This may

cause the size of the data structure to exceed the desired maximum, in which case the two least recent

buckets of size 1 are merged to form a single bucket of size 2. The merge may cascade, and cause two

buckets of size 2 to merge into one bucket of size 4 and so on. This way it is always possible to main-

tain the invariant that given any large bucketb, there are always many more elements present in buckets

that are more recent thanb than there are elements inb. In addition, all bucket sizes are powers of
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two. In an asynchronous stream, however, the element that just arrived may have an early timestamp.

This element may fit into an “old” bucket, causing the size of the bucket to increase, and break the

above described invariant. It seems that the exponential histogram is dependent on elements arriving

in order of timestamps. Dataret. al. (35) also show the following lower bound. If it is assumed that

all stream elements have distinct timestamps, then, the space complexity of maintaining an estimate

of the sum within anε relative error (either deterministic or randomized) over asynchronous stream

is Ω(logU(logW + logU)/ε) bits, whereW is the window size andU is an upper bound on the value

of an element in the stream. Since a synchronous stream is a special case of an asynchronous stream,

this lower bound applies to asynchronous streams too. Underthe assumption of distinct timestamps,

our algorithm has space complexityO(logU(logW + logU)/ε2) for returning an estimate within anε

relative error with a constant probability. This shows thatthe space cost of asynchrony in this context

is no more thanO(1/ε).

Later, Gibbons and Tirthapura (42) gave an algorithm for basic counting based on a data structure

called thewavethat used the same space as in (35), but whose time per element isO(1) worst case. Just

like the exponential histogram, the wave also strongly depends on synchronous arrivals, and it does not

seem easy to adapt it to the asynchronous case.

Recently, Busch and Tirthapura (14) have devised a deterministic algorithm for estimating thesum

(and hence, for basic counting) of elements within a slidingwindow of an asynchronous stream. Their

algorithm has a space complexity ofO(logU logW(logW + logU)/ε) for returning an answer withε

relative error. When compared with our algorithm for the sum, their algorithm has a worse dependence

on logW and a better dependence on 1/ε . Further, their algorithm does not apply to the problem of

finding the approximate median.

Arasu and Manku (7) present algorithms to approximate frequency counts and quantiles over a

sliding window. Since the median is a special case of a quantile, this also provides a solution for

estimating the median, though in the case of synchronous arrivals. Babcocket al. (10) presented

algorithms for maintaining the variance andk-medians of elements within a sliding window of a data

stream. Feigenbaumet al. (38) considered the problem of maintaining the diameter of a setof points

in the sliding window model.

Gibbons and Tirthapura (41) introduced the distributed streams model. In this model, each of many
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distributed parties observes a local stream, has limited workspace, and communicates with a central

“referee”. When an estimate for the aggregate is requested,the different parties send a “sketch” back to

the referee who computes an aggregate over the union of the streams observed by all the parties. In (41),

algorithms were presented for estimating the number of distinct elements in the union of distributed

streams, and the size of the bitwise-union of distributed streams. In a later work (42), they considered

estimation of functions over a sliding window on distributed streams. However, the algorithms in (42)

were designed for the case of synchronous arrivals. Patt-Shamir (66) presented communication efficient

algorithms for computing various aggregates, such as the median and number of distinct elements in a

sensor network, and considered multi-round distributed algorithms for that purpose.

Guha, Gunopulos, and Koudas (45) consider the problem of computing correlations between mul-

tiple vectors. The vectors arrive as multiple data streams,and within each stream, the elements of a

vector arrive as updates to existing values; the updates areasynchronous, and do not necessarily ar-

rive in order of the indexes of elements. Their work focuses on the approximate computation of the

largest eigenvalues of the resulting matrix, using limitedspace and in one pass on both synchronous

and asynchronous data streams. They do not consider the context of sliding windows.

Srivastava and Widom (72) designed aheartbeatgeneration algorithm to support continuous queries

in a Data Stream Management System, which receives multipleasynchronous data streams. Each

stream is a sequence of tuples of the form〈value, timestamp〉. The timestamp is tagged by the source

of the stream. By capturing the skew between steams, and the asynchrony and network transmission

latency of each stream, their algorithm can generate and update a “heartbeat” continuously. The algo-

rithm guarantees that there will be no new tuples arriving with a timestamp earlier than the heartbeat.

All tuples with timestamp greater than the current heartbeat are buffered. Once the heartbeat is updated

(advanced), all buffered tuples with timestamp earlier than the new heartbeat are submitted to the query

processor to answer continuous queries. Their algorithm requires that the skew between streams, and

the asynchrony and the network transmission latency of eachstream be bounded, while our algorithm

works onanyasynchronous stream. Their work does not consider maintenance of aggregates, as we do

here.

Another sketch that is popular in networking applications is the Bloom filter (11), which summa-

rizes a set of items to support approximate membership queries. A Bloom filter tackles a different type
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of sketching problem than we do – our sketches are designed tosupport aggregate queries on data,

while a Bloom filter supports queries about the existence (ornot) of individual elements in the data.

Since keeping information about individual elements is clearly expensive, a Bloom filter is a rather

bulky sketch when compared to the sketches we present here. The space taken by our sketches do not

depend on the number of elements in the data set (it only depends on the desired accuracy), while the

size of a Bloom filter is linear in the number of elements.

Much other recent work on data stream algorithms has been surveyed in (8; 62). To our knowledge,

our work is the first to consider aggregates over sliding windows under asynchronous arrivals.

2.2 Sum of Positive Integers

We first consider the computation of the sum in the centralized model. The stream received by the

aggregator isR= 〈d1 = (v1, t1),d2 = (v2, t2), . . . ,dn = (vn, tn)〉 where thevis are positive integers and

tis are the timestamps. Recallc denotes the current time at the aggregator. The goal is to maintain a

sketch of the streamR which will provide an answer for the following query.For a user provided w

that is given at the time of the query, what is the sum of the observations within the current timestamp

window[c−w,c]? The sketch should be quickly updated as new elements arrive,and no assumptions

can be made on the order of arrivals.

We assume that the algorithm knowsW, an upper bound on the window size. For window size

w≤W, let Rw denote the set of observations within the current timestampwindow, i.e.Rw = {(v, t) ∈

R|c−w≤ t ≤ c}. Givenw, the sketch should return an estimate ofV, the sum of input observations

within Rw. V = ∑{(v,t)∈Rw} v

The value ofW depends on the application. For example, in a network monitoring application, the

user (network administrator) may never have an interest in querying about packets that were generated

more than 24 hours ago, in which case settingW to be 24 hours will suffice. Note thanW can also be

set to infinity, which essentially means that the sketch summarizes the whole stream.

2.2.1 Intuition

Our algorithm is based onrandom sampling. The high level idea is as follows. In order to estimate

the sum of integers within the sliding window, the stream elements are randomly chosen into a sample
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as they are observed by the aggregator. When an estimate is asked for the sum of elements in a given

timestamp window, the algorithm computes the sum of all elements in the sample that are within the

timestamp window, multiplies it by the appropriate factor (inverse of the sampling probability), and

returns the product as the estimate. The description thus far is the recipe for most estimation algorithms

that are based on random sampling. In getting random sampling to work for this scenario, we need the

following ideas.

First, suppose the goal is to estimate the cardinality of a set using random sampling. In order to get

a desired accuracy for the estimate, it is enough to sample the elements of the set such that the size of

the resulting sample is “large enough”; what is “large enough” depends only on the desired accuracy

(ε andδ ), and not on the size of the set itself. The required size of the sample can be determined using

Chernoff bounds.

Next, in estimating the sum, different elements in the stream have to be treated with different

weights during random sampling, otherwise the error in estimation could become too large. For exam-

ple, two observationsd1 = (100, t) andd2 = (1, t) may both be included in the current sliding timestamp

window, but the sampling should give greater weight tod1 than tod2, to maintain a good accuracy for

the estimate. If every element is sampled with the same probability, it can be verified that the expected

value of the estimate is correct, but the variance of the estimate is too large for our purposes. The

exact differences in the handling of elements with different values is crucial for guaranteeing the error

bounds, and for further details on this we refer the reader tothe formal description of the algorithm. We

note that many of the technical proofs in this chapter are devoted to this aspect of handling elements

with varying weights.

Finally, the “correct” probability of sampling cannot be predicted before the query for the sum is

asked. If the answer for the sum is large (estimation of the size of a “dense” set), then a small sampling

probability may be enough to return an accurate estimate. Ifthe answer for the sum is small (estimation

of the size of a “sparse” set), then a larger sampling probability may be necessary. Thus, our algorithm

maintains not just one random sample, but many random samples, at probabilitiesp = 1,1/2,1/4, . . .

Clearly, the samples at larger probabilities may be too large to fit within the workspace, but we show

that in each sample, it suffices to maintain only the most recent elements selected into the sample.

When a query is asked, with high probability, one of these samples will provide a good estimate for the
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Algorithm 1 : SumInit()
Task: Initialize the sketch.

for i = 0. . .M do1

Si ← φ ; /* All samples initially empty */2

ti ←−1 ; /* No items have been discarded yet */3

sum of all elements within the sliding timestamp window. In our actual algorithm however, all samples

are not explicitly stored. To improve the element processing time, each element is stored only in the

lowest probability sample that it is selected into. When required to answer a query for the sum, the

required sample is reconstructed using all samples at lowerprobabilities.

2.2.2 Formal Description of the Algorithm

We assume that the algorithm knows an upper boundVmax on the value ofV. The space complexity

of the sketch depends on logVmax. For example, if an upper boundm was known on each valuev

corresponding to the sum of elements at a time instant, and there were no more thanf stream elements

with the same timestamp, thenm fW is a trivial upper bound onV.

Let M = ⌈logVmax⌉. The algorithm maintains(M + 1) samples, denotedS0,S1, . . . ,SM . SampleSi

is said to be at “level”i. Each sampleSi contains the most recent elements selected into the sample,

and when more elements enter the sample, older elements are discarded. Letti be the most recent

timestamp of elements discarded fromSi . The purpose ofti is to help in determining the range of

timestamps that are still present in the sample. The maximumnumber of elements in each sampleSi is

α = (12/ε2) ln (8/δ ).

The algorithm is described in algorithmsSumInit, which describes the initialization steps for the

sketch,SumProcesswhich describes the algorithm for updating the sketch upon receiving a new ele-

ment, andSumQuery, which describes the steps for answering a query for the sum.

2.2.3 Correctness Proof

Let X denote the result returned bySumQuery(w)when a query is asked for the sum of elements

within the sliding timestamp window[c−w,c]. We show thatX is an(ε ,δ )-estimate ofV.
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Algorithm 2 : SumProcess(d=(v,t))
Input : v is the value of the element, and is a positive integer;t is the timestamp
Task: Insertd into the sketch.

if (t < c−W) then return ; /* Discard d since it is outside the largest1

timestamp window, and a future query will never involve d. */

Let ℓ = min
{

i|0≤ i ≤M,v/2ℓ < 1
}

; /* ℓ is an integer. */2

Let Pr[r = 1] = v/2ℓ and Pr[r = 0] = 1−v/2ℓ;3

if r = 1 then k←min{Z,M−ℓ+1}, whereZ is the number of flips of a fair coin till the first tail;4

if r = 0 then k← 0;5

Insert(v, t) into Sℓ+k−1;6

if |Sℓ+k−1|> α then7

Discard the element with the lowest timestamp inSℓ+k−1;8

Let t ′ be the timestamp of the discarded element;9

tℓ+k−1←max{tℓ+k−1, t ′};10

Algorithm 3 : SumQuery(w)
Input : w≤W is the width of the window
Output : An estimate of the sum of all stream elements with timestamps in the range[c−w,c]

Let ℓ′ ∈ [0,M] be the smallest integer, such that for allℓ′ ≤ j ≤M, t j < c−w;1

if no suchℓ′ existsthen ℓ′←M +1;2

if ℓ′ ≤M then3

for i = ℓ′ to M do ηi← ∑(v,t)∈Si ,t≥c−w max( v
2ℓ′

,1);4

return 2ℓ′ ∑M
i=ℓ′ ηi;5

if ℓ′ = M +1 then return ; /* Algorithm Fails */6

Definition 2.2.1. For each element d= (v, t) ∈ Rw, for each level i= 0,1,2, . . . ,M, random variable

xi(d) is defined as follows. Letγ be the smallest level such that v/2γ < 1.

• For 0≤ i < γ , xi(d) = v/2i .

• xγ (d) = 1 with probability v/2γ , and xγ (d) = 0 with probability1−v/2γ .

• For γ < i ≤M, xi(d) is defined inductively. If xi−1(d) = 0 then, xi(d) = 0. If xi−1(d) = 1, then

xi(d) = 1 with probability 1
2 and xi(d) = 0 with probability1/2.

Definition 2.2.2. For i = 0, . . . ,M, Ti is the set constructed by the following probabilistic process. Start

with Ti ← φ . For each element d= (v, t) ∈Rw, if xi(d) 6= 0, then insert(xi(d), t) into Ti .

Note thatTi is defined for the purpose of the proof only, but theTis are not stored by the algorithm.
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Definition 2.2.3. For i = 0, . . . ,M, define Xi = ∑(u,t)∈Ti
u.

Lemma 2.2.1. If d = (v, t) then E[xi(d)] = v/2i

Proof. Let γ be defined as in Definition2.2.1, i.e. γ is the smallest level such thatv
2γ < 1. For 0≤ i < γ

E[xi(d)] = v/2i , sincexi(d) is a constant. Forγ ≤ i ≤ M, xi(d) is a 0-1 random variable. We use

proof by induction oni to show thatE[xi(d)] = Pr[xi(d) = 1] = v/2i . The base casei = γ is true

since Pr[xγ(d) = 1] = v/2γ by definition. Assume that fori ≥ γ , Pr[xi(d) = 1] = v/2i . Again, using

Definition 2.2.1, Pr[xi+1(d) = 1] = (1/2) ·Pr[xi(d) = 1] = v/2i+1, thus proving the inductive step.

Lemma 2.2.2. For i = 0, . . . ,M, E[Xi] = V/2i

Proof. The definitions ofXi andxi(d) yield the following.

Xi = ∑
(u,t)∈Ti

u = ∑
d=(v,t)∈Rw

xi(d)

Using linearity of expectation and Lemma2.2.1, we get:

E[Xi] = ∑
d=(v,t)∈Rw

E[xi(d)] = ∑
d=(v,t)∈Rw

v
2i =

1
2i ∑

d=(v,t)∈Rw

v =
V
2i

Lemma 2.2.3.When asked for an estimate for V , ifSumQuery(w) does not fail in Step6, then it returns

2ℓ′Xℓ′ for valueℓ′ selected in Step1.

Proof. ConsiderSumQuery(w)when asked for an estimate of the sum of elements inRw.

Note that the level chosen by the algorithm,ℓ′, satisfies the following condition. For all levels

ℓ′ ≤ i ≤ M, the most recent timestamp of the discarded elements (contained in the variableti in the

algorithm) is less thanc−w. Thus, for alli, ℓ′ ≤ i ≤M, no element which is selected intoSi and has a

timestamp at leastc−w is discarded.

Next, we argue that the contribution of each elementd = (v, t) ∈ Rw to the value returned by the

algorithm is 2ℓ
′
xℓ′(d). Supposexℓ′(d) = 0. We refer to the algorithm for processing an element in

SumProcess(d). The arrival of elementd = (v, t) causes an insertion of(v, t) into Si for level i < ℓ′. Note
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that in computing the estimate,SumQuery(w)only uses elements from levelsℓ′ or greater, elementd

will not contribute to the estimate returned by the algorithm.

Supposexℓ′(d) > 0. Again, referring toSumProcess(d), we note that the arrival ofd causes an

insertion of(v, t) into a leveli ≥ ℓ′. In answering a query for the sum (SumQuery(w)), all elements with

timestamp at leastc−w which are inserted into levelsℓ′ or greater are considered, and their contribution

to the estimate is exactly 2ℓ′xℓ′(d). To see this, supposev≥ 2ℓ′ . Then,xℓ′(d) = v/2ℓ′ . From Step4 in

SumQuery(w), the contribution ofv to the estimate is 2ℓ
′
(v/2ℓ′) = 2ℓ′xℓ′(d). Supposev < 2ℓ′ . Then

xℓ′(d) should be 1, since it is a 0-1 random variable. In such a case, from Step4 in SumQuery(w), the

contribution ofd to the estimate is 2ℓ
′
= 2ℓ′xℓ′(d). Thus, for eachd = (v, t) ∈ Rw, the contribution to

the returned estimate is 2ℓ′xℓ′(d). The total returned estimate is exactly 2ℓ′Xℓ′.

Next, we will show thatXℓ′ is a good estimate forV. The following definition captures the notion

of whether or not different samples yield good estimates forV.

Definition 2.2.4. For i = 0, . . . ,M, random variable Xi is said to be “good” if (1− ε)V ≤ Xi2i ≤

(1+ ε)V, and “bad” otherwise. Define event Bi to be true if Xi is bad, and false otherwise.

Lemma 2.2.4. If |Rw| ≤ α , thenSumQuery(w) returns the exact answer for the sum.

Proof. Note that each element inRw was selected intoS0 when it was processed. Since theα elements

with the most recent timestamps are stored inS0, it must be true thatRw⊆ S0. SumQuerywill retrieve

all of Rw from S0 and return the exact sum ofRw.

Because of the above lemma, in the rest of the proof, we assume|Rw| > α . Since each element in

the input stream is at least 1, this implies thatV > α .

Definition 2.2.5. Let ℓ⋆ ≥ 0 be an integer such that E[Xℓ⋆]≤ α/2 and E[Xℓ⋆] > α/4.

Lemma 2.2.5. Levelℓ⋆ is uniquely defined and exists for every input stream R.

Proof. From Lemma2.2.2, we haveE[Xi] = V/2i . SinceV > α , E[X0] > α . By the definition of

M = ⌈logVmax⌉, it must be true thatV ≤ 2M for any input streamR, so thatE[XM]≤ 1. Since for every

increment ini, E[Xi] decreases by a factor of 2, there must be a unique level 0< ℓ⋆ < M such that

E[Xℓ⋆]≤ α/2 andE[Xℓ⋆] > α/4.
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For the next lemmas, we use a version of Hoeffding bounds fromSchmidt, Siegel and Srini-

vasan (70) (Section 2.1) which is restated here for convenience. Lety1,y2, . . . ,

yn be independent 0-1 random variables with Pr[yi = 1] = pi . LetY = y1+y2+ . . .+yn, and letµ = E[Y].

Lemma 2.2.6. Hoeffding’s Bound (restated from (70)):

(1) If 0 < δ < 1, thenPr[Y > µ(1+ δ )]≤ e−µδ 2/3.

(2) If δ ≥ 1, thenPr[Y > µ(1+ δ )]≤ e−µδ/3.

(3) If 0 < δ < 1, thenPr[Y < µ(1−δ )]≤ e−µδ 2/2.

The next lemma helps in the proof of Lemma2.2.8.

Lemma 2.2.7. If 0 < a < 1
2 and k≥ 0, then a(2

k) ≤ a
2k

Proof. It is clear by induction that 2k− 1≥ k. Since 0< a < 1
2, we can further havea(2k−1) ≤ ak <

(1/2)k. Therefore,a(2k) < a
2k .

The next lemma shows that it is highly unlikely thatBℓ is true for anyℓ such that 0≤ ℓ≤ ℓ⋆.

Lemma 2.2.8. For integerℓ such that0≤ ℓ≤ ℓ⋆,

Pr[Xℓ 6∈ (1− ε ,1+ ε)E[Xℓ]] <
δ

2ℓ⋆−ℓ+2

Proof.

Xℓ = ∑
d=(v,t)∈Rw

xℓ(d)

From Definition2.2.1, it follows that for somed ∈ Rw, xℓ(d) is a constant and for othersxℓ(d) is a

0-1 random variable. Thus,Xℓ is the sum of a few constants and a few random variables. LetXℓ = c+Y

wherec denotes the sum of allxℓ(d)’s that are constants, andY is the sum of thexℓ(d)’s that are 0-1

random variables. Clearly, since the different elements ofthe stream are sampled using independent

random bits, the random variablesxℓ(d) for differentd ∈ Rw are all independent. ThusY is the sum of

independent 0-1 random variables. LetµY = E[Y].

By linearity of expectation, we have

E[Xℓ] = c+ µY (2.1)
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By the definition ofℓ⋆, E[Xℓ⋆] > α/4. SinceE[Xi] = V
2i (from Lemma2.2.2). Using Equation2.1,

we get the following inequality that will be used in further proofs.

c+ µY > 2ℓ⋆−ℓ(α/4) (2.2)

We first consider Pr[Xℓ > (1+ ε)E[Xℓ]]

Pr[Xℓ > (1+ ε)E[Xℓ]] = Pr[c+Y > (1+ ε)(c+ µY)]

= Pr[Y > µY(1+
ε(c+ µY)

µY
)]

= Pr[Y > µY(1+ δ ′)],

Whereδ ′ = ε(c+ µY)/µY.

We consider two cases here:δ ′ < 1 andδ ′ ≥ 1.

Case I: δ ′ < 1. Using Lemma2.2.6and the fact(c+ µY)/µY ≥ 1, we have

Pr[Y > µY(1+ δ ′)] ≤ e−µYδ ′2/3 = e−
ε2(c+µY)2

3µY

≤ e−ε2(c+µY)/3 < e−ε2(2ℓ⋆−ℓ(α/4))/3

<

(
δ
8

)(2ℓ⋆−ℓ)

≤
δ/8
2ℓ⋆−ℓ

Where we have usedα = (12/ε2) ln(8/δ ) andδ < 1, Equation2.2and Lemma2.2.7.

Case II: δ ′ ≥ 1. Using Lemma2.2.6, we have:

Pr[Y > µY(1+ δ ′)] ≤ e−µYδ ′/3 = e−ε(c+µY)/3

< e−2(ℓ⋆−ℓ) ln (8/δ )/ε = [(
δ
8

)1/ε ]2
ℓ⋆−ℓ

< (
δ
8

)(2
ℓ⋆−ℓ) ≤

δ/8
2ℓ⋆−ℓ

where we have usedα = (12/ε2) ln(8/δ ) andδ < 1, Equation2.2and Lemma2.2.7.
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From Case I and Case II, we have

Pr[Xℓ < (1+ ε)E[Xℓ]] <
δ/8
2ℓ⋆−ℓ

(2.3)

Next we consider Pr[Xℓ < (1− ε)E[Xℓ]]

Pr[Xℓ < (1− ε)E[Xℓ]] = Pr[c+Y < (1− ε)(c+ µY)] = Pr[Y < µY(1−δ ′)]

Whereδ ′ = ε(c+ µY)/µY

Using Lemma2.2.6and the fact(µY +c)/µY ≥ 1,

Pr[Y < µY(1−δ ′)]≤ e−µYδ ′2/2 = e−
ε2(µY+c)2

2µY ≤ e−ε2(µY+c)/2

Using Equation2.2and Lemma2.2.7,

e−ε2(µY+c)/2 < [(
δ
8

)
3
2 ](2

ℓ⋆−ℓ) < (
δ
8

)(2
ℓ⋆−ℓ) ≤

δ/8
2ℓ⋆−ℓ

Thus, we have

Pr[Xℓ < (1− ε)E[Xℓ]] <
δ/8
2ℓ⋆−ℓ

(2.4)

Combining Equations2.3and2.4, for 0≤ ℓ≤ ℓ⋆, we get

Pr[Xℓ 6∈ (1− ε ,1+ ε)E[Xℓ]] = Pr[Xℓ > (1+ ε)E[Xℓ]]+Pr[Xℓ < (1− ε)E[Xℓ]] <
δ/4
2ℓ⋆−ℓ

Lemma 2.2.9.
ℓ⋆

∑
i=0

Pr[Bi] < δ/2

Proof. By definition ofBi, Pr[Bi] = Pr[2iXi 6∈ (1− ε ,1+ ε)V] = Pr[Xi 6∈ (1− ε ,1+ ε)E[Xi]]

Using Lemma2.2.8,
ℓ⋆

∑
i=0

Pr[Bi ] <
ℓ⋆

∑
i=0

δ
2ℓ⋆−i+2 =

δ
4

ℓ⋆

∑
j=0

1
2 j < δ/2
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Recall that the algorithm uses levelℓ′ in SumQuery(w)to answer the query for the sum.

Lemma 2.2.10.

Pr[ℓ′ > ℓ⋆] < δ/8

Proof. Let βi denote the number of elements ofRw that were inserted intoSi . By SumQuery(w), we

know thatβℓ′−1 > α since otherwise the algorithm would have chosen levelℓ′−1 instead. Note that for

each leveli = 0. . .M, |Ti | ≥ βi, since an insertion of an element inRw into Si always causes an insertion

into Ti (but not necessarily vice versa). Thus,|Tℓ′−1| > α . Note that from Definition2.2.2, it follows

that for all 0≤ i1 < i2≤M, |Ti1| ≥ |Ti2|. Thus, ifℓ′−1≥ ℓ⋆, then|Tℓ⋆| ≥ |Tℓ′−1|> α .

Pr[ℓ′ > ℓ⋆] = Pr[ℓ′−1≥ ℓ⋆]≤ Pr[|Tℓ⋆ |> α ] (2.5)

Since each element inTi contributes at least one toXi, we haveXi ≥ |Ti|. Combining this with

Equation2.5, we get:

Pr[ℓ′ > ℓ⋆]≤ Pr[Xℓ⋆ > α ] (2.6)

As in the proof of Lemma2.2.8, we denoteXℓ⋆ = c+Y, wherec is a constant andY is the sum of

independent 0-1 random variables. LetµY = E[Y]. SinceE[Xℓ∗]≤ α/2, we have

Pr[Xℓ⋆ > α ] ≤ Pr[Xℓ⋆ > 2E[Xℓ⋆]]

= Pr[c+Y > 2(c+ µY)]

= Pr[Y > µY(1+
c+ µY

µY
)]

Using Lemma2.2.6,

Pr[Y > µY(1+
c+ µY

µY
)] < e−µYδ ′/3 = e−(c+µY)/3

Whereδ ′ = (c+ µY)/µY > 1.

Since,E[Xℓ⋆] = c+ µY > α/4, we have
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e−(c+µY)/3 < e−
ln(8/δ )

ε2 = (
δ
8

)1/ε2
<

δ
8

Theorem 2.2.1.The result of the algorithm, Xℓ′, is an(ε ,δ )-estimate for V , the sum of all elements in

the timestamp window[c−w,c].

Proof. Let f denote the probability that the algorithm fails to return anestimate that is within anε

relative error ofV. Note that one way the algorithm can fail is by running out of levels, i.e. at levelM

the sample still has too many elements; as we show, this is an unlikely event.

f = Pr[ℓ′ > M]+Pr[
M⋃

i=0

(ℓ′ = i)∧Bi]

≤ Pr[ℓ′ > M]+
M

∑
i=0

Pr[(ℓ′ = i)∧Bi]

≤ Pr[ℓ′ > M]+
ℓ⋆

∑
i=0

Pr[Bi ]+
M

∑
i=ℓ⋆+1

Pr[ℓ′ = i]

= Pr[ℓ′ > ℓ⋆]+
ℓ⋆

∑
i=0

Pr[Bi ]

<
δ
8

+
δ
2

< δ

where we have used Lemmas2.2.9and2.2.10.

2.2.4 Complexity

Lemma 2.2.11. Space Complexity:The total space taken by the sketch for the sum is

O
((

1/ε2
)
(log(1/δ ))(logVmax)σ

)
, where Vmax is an upper bound on the value of the sum V,σ is the

space taken to store an input element(v, t), ε is the desired relative error, andδ is the desired upper

bound on the failure probability.

Proof. The algorithm maintainsM = ⌈logVmax⌉ samples, each of which has up toα = (12/ε2) ln(8/δ )

elements. Each element in the sample is a pair(v, t), which can be stored usingσ bits. The product of
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the number of samples, the number of elements per sample, andthe space per element yields the above

space complexity.

Lemma 2.2.12. Time Complexity:The worst case time complexity for processing an element d= (v, t)

by SumProcess(d) is O(logα) = O(log log(1/δ )+ log(1/ε)). The worst case time taken to answer a

query for the sum bySumQuery(w) is O(Mα) = O((1/ε2) · logVmax· log(1/δ )).

Proof. The elements in each sample can be stored using a heap that is ordered according to the times-

tamps of the elements. The heap supports two operations, (a)insertion and (b)delete-min, both in time

O(logα), since the maximum size of each sample isα = (12/ε2) ln(8/δ ).

ConsiderSumProcess(d). If input elementd = (v, t) is outside the window (Step1), then it takes

constant time to discard it. Otherwise, the time taken to processd consists of three parts. The first part

is to compute the value ofℓ in Step2, which takes constant time. The second part is to find the value

of k in Step4 of SumProcess(d). We assume that it takes constant time to generate an exponentially

distributed random numberk, where Pr[k = i] = 1/2i , i = 1,2, · · · . Thus, Step4 also takes constant

time. The third part is the actual insertion intoSℓ+k−1 in Step6, and (possibly) discarding the oldest

element ofSℓ+k−1 in Step7, which takesO(logα) time. Summing these, we find that the worst case

time to processd is O(logα).

The time taken to answer a query for the sum consists of two parts. The first part is to find the value

of ℓ in SumQuery(w), which can be done inO(M) time. The second part is to find all elements with

timestamps within the query window in sampleSi , ℓ≤ i ≤M. This part takes timeO(Mα). Summing

these two parts, the worst case time taken for answering a query is O(Mα).

2.2.5 Trade off between Processing time and Query time.

By spending more time during processing an element, it is possible to improve the query time for

the sum as follows. In algorithmSumProcess(d), instead of inserting the element into only one level

(ℓ+k−1) in Step6, it can be inserted into every level starting from 0 till(ℓ+k−1) (Figure 2 of (75)).

This way, when processing a query for the sum inSumQuery, we need to consider only a single level

ℓ′ (Figure 3 of (75)), rather than all levels fromℓ′ till M. The space complexity of the algorithm would

remain the same as before, but the time complexity would change as follows. Worst case time for
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processing an element is nowO((logVmax)(log log1/δ + log1/ε)), and time taken to answer a query

for the sum isO(log logVmax+ log(1/δ )/ε2). The time for answering the query has decreased, while

the time for processing an element has increased. In most applications, since queries are likely to be

much less frequent than element arrivals, the algorithm with faster element processing time may be

preferred (i.e. algorithmsSumProcessandSumQuery).

A more flexible trade off between processing time and query time can be obtained as follows. The

user can specify a levelL, 0≤ L < M, as a parameter toSumProcessandSumQuery. In SumProcess,

if (ℓ+k−1) < L, then insert the element into only one level(ℓ+k−1); otherwise, insert the element

into levelsL,L + 1, . . . , ℓ+ k−1. SumQueryis modified as follows. As before, levelℓ′ ∈ [0,M] is the

smallest integer such that for allj, ℓ′ ≤ j ≤M, t j < c−w. If ℓ′ < L, then the query is answered using

the union of all elements in levelsℓ′+1, ℓ′+2, . . . ,L that belong within the window. On the other hand,

if ℓ′ ≥ L, then the query is answered using only the elements in levelℓ′, since the relevant elements in

later levels are also present in levelℓ′.

With this modification, the space complexity remains the same as before, but the time complexity

changes as follows. Worst case time for processing an element is now

O((⌈logVmax⌉−L)(log log(1/δ )+ log(1/ε))), and worst case time for answering a query for the sum

is max
(
O
(
log(⌈logVmax⌉−L)+ (log(1/δ ))/ε2

)
,O
(
L · (log(1/δ ))/ε2

))
. The smaller the value ofL

is, the more time spent on processing an element, but the lesstime spent on answering a query, and

vice versa. Clearly if we chooseL = 0, the algorithm for processing an element is the one in Figure 2

of (75), i.e., the element will be inserted into every level that itis selected into, and the algorithm to

answer a query for the sum is the one in Figure 3 of (75); if we chooseL = M−1, it is SumProcess

in Section2.2.2which process an element, and the algorithm for answering a query for the sum is

SumQueryin Section2.2.2.

2.3 Computing the Median

In this section, given a maximum window sizeW, we design a sketch such that for allw≤W, the

sketch can return an(ε ,δ )-approximate median ofRw, whose values are chosen from a totally ordered

universe.

The algorithm for the median is based on random sampling, as are many earlier algorithms for
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medians and quantiles over data streams (58; 44). Roughly speaking, the median of a random sample

of a stream, where the stream is sampled at a sufficiently large probability, is an approximate median

of all elements in the stream. What is a “sufficiently large” probability depends on the size of the set

on which the median is being computed, and the desired accuracy. Since the window sizew is known

only at query time, there is no single sampling probability that suffices for all queries. Similar to the

algorithm for the sum, the idea in the algorithm for the median is to maintain many random samples

at different probabilities, starting with a probability of1 and successively decreasing by a factor of

1/2. The key differences between the algorithms for the sum andmedian are summarized below –

though these algorithms are similar from a high level, thesedifferences make the correctness proofs

quite different.

1. In the algorithm for the median, the value of the data item does not affect the sampling probabil-

ity. A uniform random sample suffices for the median, while a non-uniform sample is necessary

for the sum.

2. Another simplification in the sketch for the median is thateach element is explicitly stored in

every level that it is sampled into. In the case of the median,storing an element explicitly in each

level is not expensive, since on average, each element is sampled into only two levels. Storing

the element in this way improves the cost of a query for the approximate median, while it does

not significantly alter the cost of processing an element. Inthe case of the sum, however, storing

the element explicitly in each level it is sampled may be expensive, since an element with a high

value will be sampled into many levels.

2.3.1 Formal Description of the Algorithm

We assume that the algorithm knows an upper boundNmax on the number of elements inRw. For

example, if there were no more thanf elements with the same timestamp then settingNmax= fW will

do. The space complexity of the sketch depends on logNmax. Let N = |Rw|, M = ⌈logNmax⌉.

The algorithm for the median maintains(M +1) samplesS0,S1, . . . ,SM and the correspondingti ’s.

The maximum number of elements in each sampleSi is α = (96/ε2) ln (8/δ ). Initially, eachSi is empty

andti is set to be−1, as described inSumInit. The algorithm for updating the sketch upon receiving
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Algorithm 4 : MedianProcess(d=(v,t))
Input : v is the value of the element, and is a positive integer;t is the timestamp
Task: Insertd into the sketch.

if (t < c−W) then return ;1

Insert(v, t) into S0;2

if |S0|> α then3

Discard the element with the earliest timestamp inS0, sayt ′;4

Updatet0←max{t0, t ′};5

Seti← 1;6

while (v, t) was inserted into level(i−1) and i≤M do7

Insert(v, t) into Si with probability 1/2;8

if |Si |> α then9

Discard the element with the earliest timestamp inSi , sayt ′;10

Updateti ←max{ti , t ′};11

Incrementi;12

Algorithm 5 : MedianQuery(w)
Input : w≤W is the width of the window
Output : An estimate of the median of all stream elements with timestamps in the range[c−w,c]

Let ℓ′ be the smallest integer 0≤ ℓ′ ≤M such thattℓ′ < c−w;1

if ℓ′ existsthen return the median of the set{(v, t) ∈ Sℓ′ |t ≥ c−w};2

elseℓ′←M +1;3

if ℓ′ = M +1 then return ; /* Algorithm fails */4

a new element is described inMedianProcess, andMedianQueryreturns an estimate of the median of

Rw when receiving a query.

2.3.2 Correctness Proof

We now show that the result ofMedianQuery(w)is an(ε ,δ )-approximate median of the setRw.

Definition 2.3.1. For each element d= (v, t) ∈ Rw, for each level i= 0,1,2, . . . ,M, random variable

xi(d) is defined inductively as follows.

• x0(d) = 1

• For i > 0, if xi−1(d) = 1, then xi(d) = 1 with probability 1
2 and xi(d) = 0 with probability1/2. If

xi−1(d) = 0, then xi(d) = 0.
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Definition 2.3.2. For i = 0,1, . . . ,M, Ti is the set constructed by the following probabilistic process.

Start with Ti← φ . For each element d= (v, t) ∈ Rw, if xi(d) = 1, then insert(v, t) into Ti. Let Xi = |Ti|.

Lemma 2.3.1. Given any d= (v, t), for each i,0≤ i ≤M, E[xi(d)] = 1/2i , E[Xi] = N/2i .

Proof. We use proof by induction oni to show thatE[xi(d)] = Pr[xi(d) = 1] = 1/2i . The base case

i = 0 is true by Definition2.3.1. Assume for 0≤ i < M, Pr[xi(d) = 1] = 1/2i . Using Definition2.3.1,

Pr[xi+1(d) = 1] = 1/2·Pr[xi(d) = 1] = 1/2i+1, proving the inductive step.

Now we showE[Xi] = N/2i . Note that|Rw|= N. The Definitions2.3.1and 2.3.2yield Xi = |Ti|=

∑d∈Rw
xi(d). Using linearity of expectation, we getE[Xi] = |Rw|/2i = N/2i.

For i = 0. . .M, let γi denote the median of setTi.

Lemma 2.3.2. When asked for an estimate for the median, ifMedianQuery(w) does not fail in Step4,

then it returnsγℓ′ for valueℓ′ selected in Step1. Further, if |Rw| ≤ α , thenMedianQuery(w) returns the

exact median of Rw.

Proof. ConsiderMedianQuery(w). Note that the level chosen by the algorithm,ℓ′, satisfies the con-

dition that the timestamp of the most recently discarded element fromℓ′ is less thanc−w. Thus no

element which has been selected intoSℓ′ and has a timestamp at leastc−w has been discarded. Next

considerMedianProcess(d). For any arriving elementd = (v, t) ∈ Rw, if xℓ′(d) = 1, there will be an

insertion intoSℓ′ and by Definition2.3.2, there will also be an insertion intoTi. If xℓ′(d) = 0, the arrival

of d will not cause an insertion into eitherSℓ′ or into Tℓ′. Thus, the set of all elements inSℓ′ that have

timestamps at leastc−w is exactly the setTℓ′. By returning the median of this set, the algorithm is

returningγℓ′ .

Suppose|Rw| ≤ α . Note that each element inRw was selected intoS0 when it was processed.

Since theα elements with the most recent timestamps are stored inS0, it must be true thatRw ⊆ S0.

MedianQuerywill retrieve all of Rw from S0 and return the exact median ofRw.

Because of the above lemma, in the rest of the proof, we assumethat |Rw|> α .

Definition 2.3.3. For i = 0. . .M, let ri denote the rank ofγi in Rw. Define event Bi to be true if if

r i 6∈ [(1/2− ε)N,(1/2+ ε)N], and false otherwise. Define event Gi to be true if(1− ε)N/2i ≤ Xi ≤

(1+ ε)N/2i, and false otherwise. Letℓ⋆ ≥ 0 be an integer such thatα/4 < E[Xℓ⋆]≤ α/2.
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Lemma 2.3.3. Levelℓ⋆ is uniquely defined and exists for every input stream R.

Proof. From Lemma2.3.1, we haveE[Xi] = N/2i . SinceN > α , E[X0] > α . By the definition of

M = ⌈logNmax⌉, it must be true thatN≤ 2M for any input streamR, so thatE[XM]≤ 1. Since for every

increment ini, E[Xi] decreases by a factor of 2, there must be a unique level 0< ℓ⋆ < M such that

E[Xℓ⋆]≤ α/2 andE[Xℓ⋆] > α/4.

The following lemma shows that for levels that are less than or equal toℓ⋆, the median of the random

sample is very likely to be close (in rank) to the actual median of Rw. The proof uses conditional

probabilities. We show that for levels that are less than or equal toℓ∗, the number of elements selected

into the the level is close to its expectation with high probability. Under this condition, we show the

median of the sample is close to the actual median with high probability.

Lemma 2.3.4. For 0≤ ℓ≤ ℓ∗,

Pr[Bℓ] <
δ

2ℓ∗−ℓ+2

Proof.

Pr[Bℓ] = Pr[Gℓ∧Bℓ]+Pr[Ḡℓ∧Bℓ]

≤ Pr[Bℓ|Gℓ] ·Pr[Gℓ]+Pr[Ḡℓ] (2.7)

≤ Pr[Bℓ|Gℓ]+Pr[Ḡℓ] (2.8)

Using Lemmas2.3.5and2.3.6in Equation2.8, we get:

Pr[Bℓ] <
5δ/8

2ℓ∗−ℓ+2 <
δ

2ℓ∗−ℓ+2

Lemma 2.3.5. For 0≤ ℓ≤ ℓ∗,

Pr[Ḡℓ] <
δ

8·2ℓ∗−ℓ+2

Proof. Let µℓ = E[Xℓ] = N/2ℓ
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Pr[Ḡℓ] = Pr[Xℓ < (1− ε)µℓ∨Xℓ > (1+ ε)µℓ]

≤ Pr[Xℓ < (1− ε)µℓ]+Pr[Xℓ > (1+ ε)µℓ]

SinceE[Xi] = N/2i (from Lemma2.3.1) andE[Xℓ∗] > α/4, we haveµℓ > (α/4)2ℓ∗−ℓ. By Defini-

tion 2.1.2, we know 0< ε < 1/2. Using Lemma2.2.6,

Pr[Ḡℓ] ≤ Pr[Xℓ < (1− ε)µℓ]+Pr[Xℓ > (1+ ε)µℓ]

≤ e−µℓε2/2 +e−µℓε2/3

≤ e(−ε2·α ·2ℓ∗−ℓ−3) +e(−ε2·α ·2ℓ∗−ℓ−2/3)

= (
δ
8

)2ℓ∗−ℓ+2·3 +(
δ
8
)2ℓ∗−ℓ+3

≤ 2(
δ
8

)2ℓ∗−ℓ+3
≤

δ/4
2ℓ∗−ℓ+3 =

δ
2ℓ∗−ℓ+5

We have used Lemma2.2.7in the last inequality.

Lemma 2.3.6. For 0≤ ℓ≤ ℓ∗,

Pr[Bℓ|Gℓ] <
δ

2ℓ∗−ℓ+3

Proof.

Pr[Bℓ|Gℓ] = Pr[rℓ < (1/2− ε)N|Gℓ]+Pr[rℓ > (1/2+ ε)N|Gℓ]

The proof will consist of two parts, Equations2.9and2.10.

Pr[rℓ < (1/2− ε)N|Gℓ] <
δ/4

2ℓ∗−ℓ+2 (2.9)

Pr[rℓ > (1/2+ ε)N|Gℓ] <
δ/4

2ℓ∗−ℓ+2 (2.10)

Proof of Equation 2.9: Let L = {d ∈ Rw|rank ofd in Rw ≤ (1/2− ε)N}, Y = ∑d∈L xℓ(d). By

Lemma2.3.1, we haveE[Y] = (1−2ε)N/2ℓ+1 Sincerℓ < (1/2− ε)N, which means that at least the
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smaller half elements inTi were selected from the setL, combining the factXi ≥ (1− ε)N/2ℓ, we have

the following,

Pr[rℓ < (
1
2
− ε)N|Gℓ] = Pr[(rℓ < (

1
2
− ε)N)∧Gℓ]/Pr[Gℓ]

≤ Pr[Y ≥ (1− ε)
N

2ℓ+1 ]/Pr[Gℓ]

= Pr[Y ≥ (1+ δ ′)E[Y]]/Pr[Gℓ],

Whereδ ′ = ε/(1−2ε) and Pr[Gℓ]≥ 1−δ/(8·2ℓ∗−ℓ+2)

Case 1:if 0 < δ ′ < 1, then

Pr[Y ≥ (1+ δ ′)E[Y]]≤ e−E[Y]δ ′2/3 < (
δ
8

)
2ℓ∗−ℓ+2

1−2ε < (
δ
8

)2ℓ∗−ℓ+2
≤

δ/8
2ℓ∗−ℓ+2

Case 2:if δ ′ ≥ 1, then

Pr[Y ≥ (1+ δ ′)E[Y]]≤ e−E[Y]δ ′/3 < (
δ
8

)
2ℓ∗−ℓ+2

ε < (
δ
8

)2ℓ∗−ℓ+2
≤

δ/8
2ℓ∗−ℓ+2

Thus,

Pr[Y ≥ (1+ δ ′)E[Y]]/Pr[Gℓ]≤
δ

2ℓ∗−ℓ+4

In both Cases 1 and 2, we have used the factE[Xℓ] = N/2ℓ > (α/4)2ℓ∗−ℓ in addition to Lemma2.2.6

and Lemma2.2.7. From Cases 1 and 2, Equation2.9is proved. Equation2.10can be similarly proved.

From Equations2.9and2.10, we get:

Pr[Bℓ|Gℓ] < 2
δ

2ℓ∗−ℓ+4 =
δ

2ℓ∗−ℓ+3

Lemma 2.3.7.
ℓ∗

∑
i=0

Pr[Bi ] <
δ
2
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Proof. The proof directly follows from Lemma2.3.4

ℓ∗

∑
i=0

Pr[Bi ] <
ℓ∗

∑
i=0

δ
2ℓ∗−ℓ+2 = δ

ℓ∗+2

∑
i=2

1
2i < δ

∞

∑
i=2

1
2i =

δ
2

Recall that levelℓ′ in MedianQuery(w)is used to answer the query for the median.

Lemma 2.3.8.

Pr[ℓ′ > ℓ∗] <
δ
8

Proof. If ℓ′ > ℓ⋆, it follows that |Tℓ⋆ | = Xℓ⋆ > α , else the algorithm would have stopped at a level less

than or equal toℓ⋆. Thus, Pr[ℓ′ > ℓ⋆]≤ Pr[Xℓ⋆ > α ]. LetY = Xℓ⋆. SinceY = ∑d∈Rw
xℓ∗(d), wherexℓ∗(d)

is 0-1 random variable,E[Y]≤ α/2. Using Lemma2.2.6, we have

Pr[ℓ′ > ℓ⋆] ≤ Pr[Y > α ]≤ Pr[Y > 2E[Y]]

≤ e−E[Y]/3 < e−α/12 < (
δ
8

)
8

ε2

<
δ
8

We have used the factE[Y] > α/4.

Theorem 2.3.1.The result of algorithmMedianQuery(w) is an(ε ,δ )-approximate median of Rw.

Proof. Let f denote the probability that the algorithm fails to return an(ε ,δ )-approximate median of

Rw. Using Lemmas2.3.7and2.3.8and a similar argument to the proof of Theorem2.2.1, we get:

f = Pr[ℓ′ > M]+Pr[
M⋃

i=0

(ℓ′ = i)∧Bi]

≤ Pr[ℓ′ > ℓ⋆]+
ℓ⋆

∑
i=0

Pr[Bi] <

(
δ
8

+
δ
2

)

< δ
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2.3.3 Complexity

Lemma 2.3.9. Space Complexity:The total space taken by the sketch for the median is

O((1/ε2) log(1/δ ) · logNmax·σ), where Nmax is an upper bound on the number of elements within Rw,

σ is the space taken to store an input element(v, t), ε is the desired relative error, andδ is the desired

upper bound on the failure probability.

Proof. The algorithm maintainsM = ⌈logNmax⌉ samples, each of which has up toα = (96/ε2) ln(8/δ )

elements. Each element in the sample is a pair(v, t), which can be stored usingσ bits. The product of

the number of samples, the number of elements per sample, andthe space per element yields the above

space complexity.

Lemma 2.3.10. Time Complexity:The expected time taken for handling an element(v, t) is

O(log log(1/δ )+ log(1/ε)). The time taken to answer a query for the median is

O(log logNmax+(1/ε2) log(1/δ )).

Proof. The proof is similar to that of Lemma2.2.12. All elements in the same level can be stored in

a heap. Each incoming element is sampled into an expected constant number of levels, where the cost

of insertion into each level, plus the cost of handling the overflow isO(logα). For answering a query

for the median, the appropriate level can be found in timeO(log logNmax) through a binary search, and

finding the median of the sample at the appropriate level takesO(α) using the linear time algorithm for

finding a median. So the total cost for answering a query for the median isO(log logNmax+ α).

2.4 Union of Sketches

In a distributed system, there could be multiple aggregators, each of which is observing a different

local stream. It may be necessary to compute aggregates on not just any individual stream, but on the

union of the data in all streams. We now consider the computation of aggregates over recent elements

of the union of distributed data streams.

A simple solution to the above problem would be to send all streams directly to an aggregator (or

thesink) which can then compute an aggregate on the entire data received. However, such an approach

would be extremely resource-intensive with respect to communication complexity and energy, since

each data item of each stream has to traverse a path from the source to the destination.
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Input
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Carol

SkBSkA

Union sketch SkC

Figure 2.1 Left: a spanning tree which connects aggregatorswith flow of infor-
mation towards a sink; Right: an aggregator merges the sketches of
two aggregators

A much more efficient approach is for each node to compute a small space sketch of its local

stream, and communicate the sketch to the sink. The sink can use the sketches to estimate the aggregate

over the union of all data streams. Since the sketches are much smaller than the streams themselves,

this approach has much smaller communication complexity than the simple approach. In sensor data

processing, there have been successful proposals (for example, Maddenet al. (56)) to combine such

sketches in a hierarchical fashion, where sketches are combined up a spanning tree which is rooted at

the sink node (see Figure2.1).

Each aggregator sends its sketch to its parent. The parent node receives sketches from all its chil-

dren, combines them into a new sketch and then sends the new sketch to its own parent. In this way,

sketches propagate and get combined at intermediate levelsof the tree until they reach the sink. The

sink combines the received sketches from its children and produces a final sketch for the union of all

the (local) streams received by all aggregators. We consider the simple case of three aggregators, Alice

(child), Bob (child), and Carol (parent) (see Figure2.1). The scenario can be generalized for an arbi-

trary number of aggregators, or aggregators organized in a hierarchy. Suppose Alice and Bob receive

respective (asynchronous) streamsA andB, producing sketchesSkA andSkB, respectively, each for a

maximum window sizeW. Alice and Bob transmit their sketches to Carol, who combines SkA andSkB

to produce a sketchSkC for the unionA∪B. Though Carol never sees streamsA or B, she can useSkC

to answer aggregate queries for any timestamp window of width w≤W over the data setA∪B.

The algorithm for the union is formally described inUnion(·, ·). Given sketchesSkA andSkB of

streamsA and B respectively, the algorithm outputsSkC, a sketch ofA∪B, which can be used to

answer queries for the approximate sum or median of all elements within a sliding timestamp win-

dow overA∪B. In Union(), for 0≤ i ≤ M, let SA
i denote the leveli sample of Alice, andtA

i de-
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Algorithm 6 : Union(SkA, SkB)

Input : SkA =< SA
0 , tA

0 ,SA
1 , tA

1 , , . . . ,SA
M , tA

M >, a sketch of Alice’s local streamA
SkB =< SB

0 , tB
0 ,SB

1 , tB
1 , . . . ,SB

M, tA
M >, a sketch of Bob’s local streamB

Output : SkC, a sketch ofC = A∪B

for i = 0. . .M do1

if |SA
i ∪SB

i | ≤ α then2

SC
i ← SA

i ∪SB
i ;3

tCi ←max{tA
i , tB

i };4

else5

SC
i is the set ofα most recent elements inSA

i ∪SB
i ;6

Let t be the most recent timestamp in
(
(SA

i ∪SB
i )−SC

i

)
;7

ti←max{t, tA
i , tB

i };8

note the most recent timestamp of a discarded element fromSA
i . The sketch computed by Alice

is the vectorSkA = 〈SA
0 , tA

0 ,SA
1 , tA

1 , . . . ,SA
M , tA

M〉. Similarly, the sketch computed by Bob is the vector

SkB = 〈SB
0 , tB

0 ,SB
1 , tB

1 , . . . ,SB
M , tB

M〉.

The high level algorithm for the union is the same whether theaggregate required is the sum or the

median. The only difference is that in case of the sum, the parameterM = logVmax, whereVmax is an

upper bound on the sum of observations within the window across all streams. Note that the sketch

of each local stream must also useM = logVmax, whereVmax is defined above. In case of the median,

M = logNmax, whereNmax is an upper bound on the number of elements within the timestamp window

across all streams. Note that the sketch of each local streammust also useM = logNmax, whereNmax is

defined above. Of course, the algorithms for sketching the local streams are different for the sum and

for the median, though the algorithms for the union of sketches are the same. The initialization ofSkC

and the algorithm for answering the query (sum or median) using SkC are the same as for the single

stream case.

The sketches can be combined hierarchically. For example, supposeD andE were two other local

streams, andSkF was the result ofUnion(SkD,SkE). ThenSkC andSkF can be combined usingUnion()

to yield a sketch ofA∪B∪D∪E. A key property required for the above hierarchical union towork

is that the combination of sketches islosslessandcompact. A sketch is said to becompactif SkC, the

sketch resulting from the Union operation, has the same (small) upper bound on the size as doSkA and

SkB. If a sketch is compact, then the size of the sketch resultingfrom the combination of many sketches
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is bounded, and does not increase beyond a threshold no matter how many sketches are combined. The

sketch is said to belosslessif the guarantee provided bySkC (for example,(ε ,δ )-accuracy for the sum

or the median) on dataA∪B is the same as the guarantees provided by sketchesSkA andSkB on data

setsA andB respectively. In this way, the quality and size of the sketchat each level of the tree will be

insensitive to the structural properties of the tree, such as its degree and depth. We now argue that the

sketches developed for the sum and the median are compact.

Compactness of Sketches. The sketch resulting from the unionSkC is< SC
0 , tC0 ,SC

1 , tC1 , . . . ,SC
M , tCM >.

Since the upper bound on the number of elements inSC
i , SB

i andSA
i are allα , the bounds on the sizes

of SkC, SkA andSkB are identical. Thus, the sketch for the sum is compact and hasa space complex-

ity as described in Lemma2.2.11. Similarly, the sketch for the median is compact, and has a space

complexity as described in Lemma2.3.9.

Losslessness of Sketches.We will now show that the sketch resulting fromUnion() also pre-

serves the same accuracy as its constituent sketches, but for the data stream constructed by the union

of the individual streams. LetSkAsum andSkBsum respectively denote the sketches forA andB for the

sum, for a maximum window sizeW, relative errorε and failure probabilityδ . Let SkAmed andSkBmed

respectively denote the sketches forA andB for the (ε ,δ )-approximate median, for a maximum win-

dow sizeW ≥ w. Let SkCsum denote the result ofUnion(SkAsum,SkBsum) andSkCmed denote the result of

Union(SkAmed,SkBmed).

Let SkA∪B
sum be the sketch resulting from applying AlgorithmSumProcess(described in Section2.2)

for over all elements of the streamA∪B. In generating the sketch ofA∪B, we do not assume anything

about the order of arrival of elements inA∪B; the resulting sketch will not depend on this order.

We assume that the random choices that are made by algorithmSumProcessin processing an element

are identical whether the element is processed as a part of streamA∪B or as a part of the individual

streamsA or B. The sketch for the sum assumes a maximum window sizeW, relative errorε and

failure probabilityδ . Similarly, letSkA∪B
med be the sketch resulting by applying algorithmMedianProcess

(described in Section2.3) over all elements ofA∪B. Again, the elements of streamA∪B can arrive

in any order, and this order does not affect the final sketch generated. The sketch for the median

also assumes a maximum window sizeW, and returns an(ε ,δ )-approximate median. For simplicity,
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we assume that a sketch never contains any element with a timestamp of less than(c−W), where

c is the current time. This assumption is justified since the algorithmsSumQuery(Section2.2) and

MedianQuery(Section2.3) will never consider such elements with timestamps less than (c−W), even

if they are present in the sketch.

Lemma 2.4.1.

SkCsum= SkA∪B
sum

SkCmed= SkA∪B
med

Proof. We showSkCsum= SkA∪B
sum, and a similar argument holds forSkCmed = SkA∪B

med. Let RA
W and RB

W

denote the set of elements with timestamps in the maximum window [c−W,c] over streamsA andB

respectively. Fori = 0,1, . . . ,M, let SA
sum,i denote theith level sample ofSkAsum. Similarly, we define

SB
sum,i ,S

C
sum,i andSA∪B

sum,i .

For any element(v, t) ∈ RA
W∪RB

W, note that the same algorithmSumProcessis used to process the

element, whether it occurs as an element in streamA or B or A∪B. SumProcessuses onlyv andt to

decide whether the element(v, t) is selected into the sample at leveli or not. Thus, if(v, t) ∈ RA
W is

selected intoSA
sum,i , then it will also be selected intoSA∪B

sum,i , and vice versa. Therefore the set of elements

that are ever selected intoSA
sum,i or SB

sum,i is exactly the same set of elements that are ever selected into

SA∪B
sum,i . For any leveli = 0. . .M, SA

sum,i retains theα elements with the most recent timestamps that were

ever selected intoSA
sum,i , and similarly withSB

sum,i . From Steps2 and5 of Union(), we see thatSC
sum,i

retains theα most recent elements that ever selected intoSA
sum,i or into SB

sum,i . Thus,SC
sum,i retains theα

most recent elements amongA∪B that were selected into leveli of SkA or SkB.

Note thatSA∪B
sum,i also keeps theα most recent elements that are ever selected intoSA∪B

sum,i . Thus, for

i = 0,1, . . . ,M, SC
sum,i = SA∪B

sum,i , which impliesSkCsum= SkA∪B
sum.

From the above lemma, it follows that all properties ofSkA∪B
sum carry over toSkCsum. From Theo-

rem 2.2.1we knowSkA∪B
sum provides an(ε ,δ )-estimate for the sum within any timestamp window of

width at mostW on A∪B. Thus,SkCsum also provides the same estimate for the sum within a sliding

window, showing that the union of sketches is lossless. A similar argument can be made for sketches
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for the median.

We now consider sketches that are combined in a hierarchicalfashion. Consider a tree where each

leaf observes a local stream, and passes a sketch for the sum (median) up to its parent. Sketches arriving

at any internal node are combined and passed up the tree untilthe root receives sketches from all its

children. If the algorithmUnion() was applied at every internal node of the tree, then the root will

finally have a sketch that can be used to answer queries for thesum (median) of elements within a

sliding timestamp window of the union of all streams appearing at the leaves of the tree. This can be

proved by repeatedly applying Lemma2.4.1at every internal node of the tree and at the root. The

above algorithm for the union applies even if the intermediate nodes of the hierarchy had local streams.

2.5 Concluding Remarks

In this chapter, we presented algorithms for sketching asynchronous data streams over a sliding

window of the most recent elements. Our sketches are based onrandom sampling and can return the

approximate sum or the approximate median of elements within the sliding window. We note that the

same technique that was used for the median can also be used tomaintain approximate quantiles of

elements within the sliding window. These sketches are alsouseful in distributed computations since

they can be composed in a compact and lossless manner.
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CHAPTER 3. General Time-decay Based Processing

This chapter presents a new sketch for summarizing general purpose network streaming data. It is

an generalization of the sketch in Chapter2. The new sketch has the following properties that make it

useful in communication-efficient aggregation in distributed streaming scenarios, such as sensor net-

works: (1) The sketch can handle asynchronous data streams.(2) The sketch is duplicate-insensitive,

i.e. reinsertions of the same data will not affect the sketch, and hence the estimates of aggregates.

(3) Unlike previous duplicate-insensitive sketches for sensor data aggregation (64; 22), it is also time-

decaying, so that the weight of a data item in the sketch can decrease with time according to any

arbitrary user-specified decay function, including the sliding window. (4) The sketch can give provably

approximate guarantees for various aggregates of data, including the sum, median, quantiles, and fre-

quent elements. (5) The size of the sketch and the time taken to update it are both polylogarithmic in

the size of the relevant data. (6) Further, multiple sketches computed over distributed data streams can

be combined without loss of accuracy. To our knowledge, thisis the first sketch that combines all the

above properties.

3.1 Introduction

We motivate the design of this new sketch for communication efficient data aggregation in dis-

tributed data stream scenarios by looking at its usage in thewireless sensor networks as an example.

The growing size and scope of sensor networks has led to greater demand for energy-efficient commu-

nication of sensor data. Although sensors are increasing incomputing ability, they remain constrained

by the cost of communication, since this is the primary drainon their limited battery power. It is widely

agreed that the working life of a sensor network can be extended by algorithms which limit communi-

cation (56). In particular, this means that although sensors may observe large quantities of information
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over time, they should preferably return only small summaries of their observations. Ideally, we should

be able to use a single compact summary that is flexible enoughto provide estimates for a variety of

aggregates, rather than using different summaries for estimating different aggregates.

The sensor network setting leads to several other desiderata. Because of the radio network topol-

ogy, it is common to take advantage of the ‘local broadcast’ behavior, where a single transmission can

be received by all the neighboring nodes. Here, in communicating back to the base station, each sen-

sor opportunistically listens for information from other sensors, merges received information together

with its own data to make a single summary, and announces the result. This multi-path routing has

many desirable properties: appropriate merging ensures each sensor sends the same amount, a single

summary, and the impacts of loss are much reduced, since information is duplicated many times (with-

out any additional communication cost) (64; 22). However, this duplication of data requires that the

quality of our summaries remains guaranteed, no matter whether a particular observation is contained

within a single summary, or is captured by many different summaries. In the best case the summary is

duplicate-insensitiveandasynchronous, meaning that the resulting summary is identical, irrespective

of how many times, or in what order, the data is seen and the summaries are merged.

Lastly, we observe that in any evolving setting, recent datais more reliable than older data. We

should therefore weight newer observations more heavily than older ones. This can be formalized in

a variety of ways: we may only consider observations that fall within sliding windows, and ignore

(assign zero weight to) any that are older, as we do in Chapter2; or, more generally, use an arbitrary

decay function that assigns a weight to each observation (21). A data summary should allow such decay

functions to be applied, and give us guarantees relative to the exact answer.

Putting all these considerations together leads to quite anextensive requirements list. We seek a

compact, general purposesummary, which can apply arbitrarytime decay functions, while remaining

duplicate insensitiveand handleasynchronous arrivals. Further, it should be easy toupdatewith new

observations,merge togethermultiple summaries, andquery the summary to give guaranteed quality

answers to a variety of analysis. Prior work has considered various summaries which satisfy certain

subsets of these requirements, but no single summary has been able to satisfy all of them. Here, we

show that it is possible to fulfill all the above requirementsby a single sketch which is based on a

hash-based sampling procedure that allows a variety of aggregates to be computed efficiently under a
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general class of decay functions in a duplicate insensitivefashion over asynchronous arrivals. In the

next section, we describe more precisely the setting and requirements for our data structures.

3.1.1 Problem Formulation

Data Stream. We use the asynchronous data stream defined in Section1.3 to model the stream of

observations seen by a single sensor:R= 〈e1,e2, . . . ,en〉, where eachei is a tuple(vi ,wi, ti , idi). Recall

that it is possible that same observations appear multiple times in the stream, but only one copy of the

duplicates should be counted in computing the aggregates. As we have explained in Section1.3 and

will see more examples in this chapter, the abstraction of this data stream model captures a wide variety

of cases that can be encoded in this form.

Decay Functions.Recall that a decay functionf (w,x) takes the initial weightw and the agex of the

stream element(v,w, t, id), and returns the decayed weight of the element at any clock timec. The age

of the element at timec is defined asc− t, the elapsed time since the element was created. (Section1.4)

Definition 3.1.1. A decay function f(w,x) is an integral decay functionif f (w,x) is always an integer.

For example, sliding window decay is trivially such a function. Another integral decay function is:

f (w,x) = ⌊w/2x⌋.

3.1.2 Aggregates

Let f (·, ·) denote a decay function, andc denote the time at which a query is posed. Let the set of

distinctobservations inRbe denoted byD. We now describe the aggregate functions considered:

Decayed Sum At time c the decayed sum is defined as

V = ∑
(v,w,t,id)∈D

f (w,c− t)

i.e. the sum of the decayed weights of all distinct elements in the stream. For example, suppose every

sensor published one temperature reading every minute or two, and we are interested in estimating the

mean temperature over all readings published in the last 90 minutes. This can be estimated as the ratio
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of the sum of observed temperatures in the last 90 minutes, tothe number of observations in the last

90 minutes. For estimating the sum of temperatures, we consider a data stream where the weightwi

is equal to the observed temperature, and the sum is estimated using a sliding window decay function

of 90 minutes duration. For the number of observations, we consider a data stream where for each

temperature observation, there is an element where the weight equals to 1, and the decayed sum is

estimated over a sliding window of 90 minutes duration.

Decayedφ -Quantile Informally, thedecayedφ -quantileat timec is a valueν such that the total

decayed weight of all elements inD whose value is less than or equal toν is aφ fraction of the total

decayed weight. For example, in the setting where sensors publish temperatures, each observation

may have a “confidence level” associated with it, which is assigned by the sensor. The user may

be interested in the weighted median of the temperature observations, where the weight is initially

the “confidence level” and decays with time. This can be achieved by setting the valuev equal to

the observed temperature, the initial weightw equal to the confidence level,φ = 0.5, and using an

appropriate time decay function.

Since computation of exact quantiles (even in the unweighted case) in one pass provably takes space

linear in the size of the set (61), we consider approximate quantiles. Our definition below is suited for

the case when the values are integers, and where there could be multiple elements with the same value

in D. Let the relative rank of a valueu in D at timec be defined as
(
∑{(v,w,t,id)∈D:v≤u} f (w,c− t)

)
/
(
∑(v,w,t,id)∈D f (w,c− t)

)
. For a user defined 0< ε < φ , theε-approximate

decayedφ -quantile is a valueν such that the relative rank ofν is at leastφ − ε and the relative rank of

ν−1 is less thanφ + ε .

Decayed Frequent Items Let the (weighted) relative frequency of occurrence of value u at time

c be defined as

ψ(u) =
∑{(v,w,t,id)∈D:v=u} f (w,c− t)

∑(v,w,t,id)∈D f (w,c− t)

The frequent items are those valuesν such thatψ(ν) > φ for some thresholdφ , sayφ = 2%.

The exact version of the frequent elements problems requires the frequency of all items to be tracked

precisely, which is provably expensive to do in small space (7). Thus we consider theε-approximate
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frequent elements problem, which requires us to return all valuesν such thatψ(ν) > φ and no value

ν ′ such thatψ(ν ′) < φ − ε .

Decayed Selectivity Estimation A selectivity estimationquery is, given apredicate P(v,w) which

returns 0 or 1 as a function ofv andw, to evaluateQ defined as:

Q =
∑(v,w,t,id)∈D P(v,w) f (w,c− t)

∑(v,w,t,id)∈D f (w,c− t)

Informally, the selectivity of a predicateP(v,w) is the ratio of the total (decayed) weight of all stream

elements that satisfy predicateP to the total decayed weight of all elements. Note that 0≤Q≤ 1. The

ε-approximate selectivity estimation problem is to return avalueQ̂ such that|Q̂−Q| ≤ ε .

An exact computation of the duplicate insensitive decayed sum over a general integral decay func-

tion is impossible in small space, even in a non-distributedsetting. If we can exactly compute a du-

plicate sensitive sum, we can insert an elemente, and test whether the sum changes. The answer

determines whethere has been observed already. Since this would make it possibleto reconstruct all

the (distinct) elements observed in the stream so far, such asketch needs space linear in the size of

the input, in the worst case. This linear space lower bound holds even for a sketch which can give

exact answers with aδ error probability forδ < 1/2 (5), and for a sketch that can give a deterministic

approximation (5; 53); such lower bounds for deterministic approximations alsohold for quantiles and

frequent elements in the duplicate insensitive model. Thuswe look for randomized approximations of

all these aggregates; as a result, all of our guarantees are of the form “With probability at least 1− δ ,

the estimate is anε-approximation to the desired aggregate”.

3.1.3 Contribution

The main contribution of this work is a general purpose sketch that can estimate all the above

aggregates in a general model of network data aggregation—with duplicates, asynchronous arrivals,

broad class of decay functions, and distributed computation. The sketch can accommodate any inte-

gral decay function, or any decomposable decay function (Definition 1.4.2). As already noted, to our

knowledge, the class of decomposable decay functions includes all the decay functions that have been
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considered in the data stream literature so far. The space complexity of the sketch is logarithmic in the

size of the input data, logarithmic in 1/δ whereδ is the error probability, and quadratic in 1/ε , where

ε is the relative error. There are lower bounds (49) showing that the quadratic dependence on 1/ε is

necessary for duplicate insensitive computations on data streams, thus implying that our upper bounds

are close to optimal.

In an extensive experimental evaluation, we observed that the space required by the sketch in prac-

tice can be an order of magnitude smaller than the theoretical predictions, while still meeting the ac-

curacy demands. Further, they confirm that the sketch can be updated quickly in an online fashion,

allowing for high throughput data aggregation.

Our algorithm for an integral decay function is based on random sampling, and this chapter pro-

poses a novel technique that can quickly determine the time till which an item must be retained within a

sample (this is called as the “expiry time” of the item). Thistechnique may be of independent interest.

Given a range of integers, it can quickly return the smallestinteger of the range selected by a pairwise

independent random sampling (or detect that such an integerdoes not exist).

Outline of this chapter. After describing related work in Section3.2, we consider the construc-

tion of a sketch for the case of integral decay in Section3.3. Although such functions initially seem

limiting, they turn out to be the key to solving the class of decomposable decay functions efficiently.

In Section3.4, we show a reduction from an arbitrary decomposable decay function to a combination

of multiple sliding window queries, and demonstrate how this reduction can be performed efficiently;

combining these pieces shows that arbitrary decomposable decay functions can be applied to asyn-

chronous data streams to compute aggregates such as decayedsums, quantiles, frequent elements (or

“heavy hitters”), and other related aggregates. A single data structure suffices, and it turns out that even

the decay function does not have to be fixed, but can be chosen at evaluation time. In Section3.5, we

present the results of our experiments. We make some concluding observations in Section3.6.

3.2 Related Work

There is a large body of work on data aggregation algorithms in the areas of data stream process-

ing (63) and sensor networks (51; 3; 19). In this section, we survey algorithms that achieve some ofour
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goals: duplicate insensitivity, time-decaying computations, and asynchronous arrivals in a distributed

context — we know of no prior work which achieves all of these simultaneously.

The Flajolet-Martin (FM) sketch (39) is a simple technique to approximately count the number of

distinct items observed, and hence is duplicate insensitive. Building on this, Nath, Gibbons, Seshan and

Anderson (64) proposed a set of rules to verify whether the sketch is duplicate-insensitive, and gave

examples of such sketches. They showed two techniques that obey these rules: FM sketches to compute

the COUNT of distinct observations in the sensor network, and a variation of min-wise hashing (13) to

draw a uniform, unweighted sample of observed items. Also leveraging the FM sketch (39), Considine,

Li, Kollios and Byers (22) proposed a technique to accelerate multiple updates, and hence yield a dupli-

cate insensitive sketch for the COUNT and SUM aggregates. However, these sketches do not provide

a way for the weight of data to decay with time. Once an elementis inserted into the sketch, it will

stay there forever, with the same weight as when it was inserted into the sketch; it is not possible to use

these sketches to compute aggregates on recent observations. Further, their sketches are based on the

assumption of hash functions returning values that are completely independent, while our algorithms

work with the pairwise independent hash functions. The results of Cormode and Muthukrishnan (27)

show duplicate insensitive computations of quantiles, heavy hitters, and frequency moments. They do

not consider the time dimension either.

Datar, Gionis, Indyk and Motwani (35) considered how to approximate the count over a sliding

window of elements in a data stream under a synchronous arrival model. They presented an algorithm

based on a novel data structure calledexponential histogramfor basic counting, and also presented

reductions from other aggregates, such as sum andℓp norms, to use this data structure. Gibbons and

Tirthapura (42) gave an algorithm for basic counting based on a data structure calledwavewith im-

proved worst-case performance. Subsequently, Braverman and Ostrovsky (12) defined Smooth His-

tograms, a generalization of exponential histograms that take further advantage of the aggregation

function (such as SUM and norm computations) to reduce the space required. These algorithms rely

explicitly on synchronous arrivals: they partition the input into buckets of precise sizes (typically, pow-

ers of two). So it is not clear how to extend to asynchronous arrivals, which would fall into an already

“full” bucket. Arasu and Manku (7) presented algorithms to approximate frequency counts andquan-

tiles over a sliding window. The space bounds for frequency counts were recently improved by Lee
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and Ting (54). Babcock, Datar, Motwani and O’Callaghan (10) presented algorithms for maintaining

the variance and k-medians of elements within a sliding window. All of these algorithms rely critically

on structural properties of the aggregate being approximated, and use similar “bucketing” approaches

to the above methods for counts, meaning that asynchronous arrivals cannot be accommodated. In all

these works, the question of duplicate-insensitivity is not considered except in Datar, Gionis, Indyk and

Motwani (35), Section 7.5, where an approach to count the distinct values in a sliding window is briefly

described.

Cohen and Strauss (21) formalized the problem of maintainingtime-decayingaggregates, and gave

strong motivating examples where functions other than sliding windows and exponential decay are

needed. They demonstrated that any general time-decay function based SUM can be reduced to the

sliding window decay based SUM. In this chapter, we extend this reduction and show how our data

structure supports it efficiently; we also extend the reduction to general aggregates such as frequency

counts and quantiles, while guaranteeing duplicate-insensitivity and handling asynchronous arrivals.

This arises since we study duplicate-insensitive computations (not a consideration in (21)): performing

an approximate duplicate-insensitive count (even withouttime decay) requires randomization in order

to achieve sublinear space (5). Subsequently, Kopelowitz and Porat (52) showed that the worst-case

space of this approach for decayed SUM can be improved by morecarefully handling the number

of bits used to record timestamps, bucket indices, and so on,reducing the costs by logarithmic fac-

tors. They also provided lower bounds for approximations with additive error but did not consider

duplicate-insensitive computation. Cohen and Kaplan (20) considered spatially-decaying aggregation

over network data, based on tracking lists of identities of other nodes in the network chosen via hash

functions.

Our results can be viewed as an algorithm for maintaining a sample from the stream, where the

probability of an item being present in the sample is proportional to the current decayed weight of that

item. Prior work for sampling with weighted decay includes Babcock, Datar and Motwani (9) who gave

simple algorithms for drawing a uniform sample from a sliding window. To draw a sample of expected

sizes they keep a data structure of sizeO(slogn), wheren is the number of items which fall in the

window. Recently, Aggarwal (2) proposed an algorithm to maintain a set of sampled elementsso that

the probability of therth most recent element being included in the set is (approximately) proportional



www.manaraa.com

51

to exp(−ar) for a chosen parametera. An open problem from (2) is to be able to draw samples with an

arbitrary decay function, in particular, ones where the timestamps can be arbitrary, rather than implicit

from the order of arrival. We partially resolve this question, by showing a scheme for the case of

integral decay functions.

Gibbons and Tirthapura (41) introduced a model of distributed computation over data streams.

Each of many distributed parties only observes a local stream and maintains a space-efficient sketch

locally. The sketches can be merged by a central site to estimate an aggregate over the union of the

streams: in (41), they considered the estimation of the size of the union of distributed streams, or

equivalently, the number of distinct elements in the streams. This algorithm was generalized by Pavan

and Tirthapura (67) to compute the duplicate-insensitive sum as well as other aggregates such as max-

dominance norm. Xu, Tirthapura, and Busch (79) proposed the concept of asynchronous streams and

gave a randomized algorithm to approximate the sum and median over a sliding window. Here, we

extend this line of work to handle both general decay and duplicate arrivals.

3.3 Aggregates over an Integral Decay Function

In this section, we present a sketch for duplicate insensitive time-decayed aggregation over an

integral decay functionf (). We first describe the intuition behind our sketch.

3.3.1 High-level description

Recall thatR denotes the observed stream andD denotes the set of distinct elements inR. Though

our sketch can provide estimates of multiple aggregates, for the intuition, we suppose that the task was

to answer a query for the decayed sum of elements inD at timeκ , i.e.

V = ∑
(v,w,t,id)∈D

f (w,κ− t)

Let wmax denote the maximum possible decayed weight of any element, i.e. wmax= f (w̄,0) wherew̄

denotes the maximum possible weight of a stream element. Letidmaxdenote the maximum value ofid.

Consider the following hypothetical process, which happens at query timeκ . This process description

is for intuition and the correctness proof only, and is not executed by the algorithm as such. For each
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distinct stream elemente= (v,w, t, id), a range of integers is defined as

rκ
e = [wmax· id,wmax· id + f (w,κ− t)−1]

Note that the size of this range,rκ
e , is exactly f (w,κ − t). Further, if the same elemente appears

again in the stream, an identical range is defined, and for elements with distinct values ofid, the defined

ranges are disjoint. Thus we have the following observation.

Observation 3.3.1.

∑
e=(v,w,t,id)∈D

f (w,κ− t) =

∣∣∣∣∣
⋃

e∈R

rκ
e

∣∣∣∣∣

The integers inrκ
e are placed in random samplesT0,T1, . . . ,TM as follows. M is of the order of

log(wmax· idmax), and will be precisely defined in Section3.3.4. Each integer inrκ
e is placed in sample

T0. For i = 0. . .M− 1, each integer inTi is placed inTi+1 with probability approximately 1/2 (the

probability is not exactly 1/2 due to the nature of the sampling functions, which will be made precise

later). The probability that an integer is placed inTi is pi ≈ 1/2i . Then the decayed sumV can be

estimated usingTi as the number of integers selected intoTi , multiplied by 1/pi . It is easy to show that

the expected value of an estimate usingTi is V for everyi, and by choosing a “small enough”i, we can

get an estimate forV that is close to its expectation with high probability.

We now discuss how our algorithm simulates the behavior of the above process under space con-

straints and under online arrival of stream elements. Over counting due to duplicates is avoided through

sampling based on a hash functionh, which will be precisely defined later. If an elementeappears again

in the stream, then the same set of integersrκ
e is defined (as described above), and the hash functionh

leads to exactly the same decision as before about whether ornot to place each integer inTi. Thus, if an

element appears multiple times it is either selected into the sample every time (in which case duplicates

are detected and discarded) or it is never selected into the sample.

Another issue is that for an elemente= (v,w, t, id), the length of the defined rangerκ
e is f (w,κ− t),

which can be very large. Separately sampling each of the integers inrκ
e would require evaluating the

hash functionf (w,κ − t) times for each sample, which can be very expensive time-wise, and expo-

nential in the size of the input. Similarly, storing all the selected integers inrκ
e could be expensive,

space-wise. Thus, we store all the sampled integers inrκ
e together (implicitly) by simply storing the



www.manaraa.com

53

elemente in Ti , as long as there is at least one integer inrκ
e sampled intoTi. However, the query time

κ , and hence the weight of an observation,f (w,κ− t), are unknown at the time the element arrives in

the stream, which means the rangerκ
e is unknown whene is processed. To overcome this problem, we

note that the weight at timeκ , f (w,κ − t), is a non-increasing function ofκ , and hencerκ
e is a range

that shrinks asκ increases. We define the “expiry time” of elementeat leveli, denoted by expiry(e, i),

as the smallest value ofκ such thatrκ
e has no sampled elements inTi . We storee in Ti as long as

the current time is less than expiry(e, i). For any queries issued at timeκ ≥ expiry(e, i), there will be

no contribution frome to the estimate using leveli, and hencee does not have to be stored inTi. In

Section3.3.3, we present a fast algorithm to compute expiry(e, i).

Next, for smaller values ofi, Ti may be too large (e.g.T0 is the whole input seen so far), and hence

take too much space. Here the algorithm stores only the subset Si of at mostτ elements ofTi with the

largest expiry times, and discards the rest (τ is a parameter that depends on the desired accuracy). Note

that theτ largest elements of any stream of derived values can be easily maintained incrementally in

one pass through the stream withO(τ) space. Let the samples actually maintained by the algorithmbe

denotedS0,S1, . . . ,SM.

Upon receiving a query forV at timeκ , we can choose the smallesti such thatSi = Ti , and use

Si to estimateV. In particular, for each elemente in Ti, the time-efficientRange-Samplingtechnique,

introduced in (67), can be used to return the number of selected integers in therangerκ
e quickly in time

O(log|rκ
e |).

We show an example of computing the time decayed sum in Figure3.1. Since the “value” fieldv

is not used, we simplify the element as(w, t, id). The input streame1,e2, . . . ,e8 is shown at the top of

the figure. We assume that the decayed weight of an element(wi , ti , idi) at timet is ω t
i = f (wi , t− ti) =

⌊ wi
t−ti
⌋. The figure only shows the expiry times of elements at level 0.Suppose the current timec = 15.

The current state of the sketch is shown in the figure. At the current time,e1 ande3 have expired at level

0, which implies they also have expired at all other levels.e7 ande8 do not appear in the sketch, because

they are duplicates ofe4 ande5 respectively. Among the remaining elementse2,e4,e5,e6, only theτ = 3

elements with the largest expiry times are retained inS0; thuse4 is discarded fromS0. From the set

{e2,e4,e5,e6}, a subset{e4,e5,e6} is (randomly) selected intoS1 based on the hash values of integers

in r15
ei

(this implies expiry(e4,1) > 15, expiry(e5,1) > 15, expiry(e6,1) > 15 and expiry(e2,1) ≤ 15),
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Figure 3.1 An example stream with 8 elements arriving in the ordere1,e2, . . . ,e8,
and its sketch{S0,S1,S2,S3} for the decayed sum. The current time is
15. The decayed weight ofei at timet is denoted byω t

i . The expiry
time of ei at level j is denoted by expiry(ei , j). The elemente4 in the
dashed box indicates that it was discarded fromS0 due to an overflow
caused by more thanτ = 3 elements being selected intoT0.

and since there is enough room, all these are stored inS1. Only e5 is selected intoS2 and no element is

selected into level 3.

When a query is posed for the sum at time 15, the algorithm findsthe smallest numberℓ such that

the sampleSℓ has not discarded any element whose expiry time is greater than 15. For example, in

Figure3.1, ℓ = 1. Note that at this level,Sℓ = Tℓ, and soSℓ can be used to answer the query forV. The

intuition of choosing such a smallestℓ is that the expected sample size at levelℓ is the largest among all

the samples that can be used to answer the query, and the larger the sample size is, the more accurate

the estimate will be. Further, it can be shown with high probability, the estimate forV usingSℓ has

error that is a function ofτ ; by choosingτ appropriately, we can ensure that the error is small.

3.3.2 Formal Description

We now describe how to maintain the different samplesS0,S1, . . . ,SM . Let h be a pairwise inde-

pendent hash function chosen from a 2-universal family of hash functions as follows (following Carter

and Wegman (16)). Let ϒ = wmax(idmax+ 1). The domain ofh is [1. . .ϒ]. Choose a prime numberp

such that 10ϒ < p< 20ϒ, and two numbersa andb uniformly at random from{0, . . . , p−1}. The hash

function h : {1, . . . ,ϒ} → {0, . . . , p−1} is defined ash(x) = (a·x+b) modp. We define the expiry
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Algorithm 7 : Initialization(M)

Randomly choose a hash functionh as described in Section3.3.2;1

for 0≤ i ≤M do2

Si ← /0;3

ti ←−1 ; /* ti is maximum expiry time of all the elements discarded so4

far at level i */

time of an elemente= (v,w, t, id) at sample leveli as follows.

Let Ai
e =

{
t̄ ≥ t : |r t̄

e|> 0 and for allx∈ r t̄
e,h(x) > ⌊2−i p−1⌋

}
. SetAi

e is the set of clock times at

which ranger t̄
e is not empty (meaningf (w, t̄− t) > 0), but has no integers selected by the hash function

h at level i. Note that when̄t becomes larger, ranger t̄
e shrinks and eventually becomes empty, so the

size ofAi
e is finite and can be 0.

Let Be =
{

t̄ ≥ t : |r t̄
e|= 0

}
. SetBe is the set of clock times at which ranger t̄

e is empty (meaning

f (w, t̄− t) = 0). We assume that for every decay functionf we consider, there is some finite timetmax

such thatf (w, tmax) = 0 for every possible weightw, soB must be non-empty.

It is obvious that ifAi
e 6= /0, then min(Ai

e) < min(Be) must be true, becausef (w, t̄− t) > 0 for any

t̄ ∈ Ai
e, but f (w, t̄− t) = 0 for any t̄ ∈ Be, so all the clock times in setA must be smaller than all the

clock times in setB.

Definition 3.3.1. For stream element e= (v,w, t, id), and level0≤ i ≤M:

expiry(e, i) =






min(Ai
e) if Ai

e 6= /0

min(Be) otherwise

Intuitively, expiry(e, i) is the earliest clock timēt, at which either the corresponding non-empty

integral ranger t̄
e has no integers selected by hash functionh at level i or the decayed weight ofe

becomes 0.

The sketchS for an integral decay function is the set of pairs(Si , ti), for i = 0. . .M, whereSi is the

sample, andti is the largest expiry time of any element discarded fromSi so far. The formal description

of the general sketch algorithm over an integral decay function is shown in Algorithms7 and8.

Lemma 3.3.1. The sample Si is order insensitive; it is unaffected by permuting the order of arrival

of the stream elements. The sample is also duplicate insensitive; if the same element e is observed
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Algorithm 8 : ProcessItem(e=(v, w, t, id))

for 0≤ i ≤M do1

if (e∈ Si) then return ; /* e is a duplicate. */2

if (expiry(e, i) > max{c, ti}) then3

Si ← Si ∪{e};4

if |Si |> τ then /* overflow */5

ti ←mine∈Si expiry(e, i);6

Si ← Si\{e : expiry(e, i) = ti};7

Algorithm 9 : MergeSketches(S, S′)

for 0≤ i ≤M do1

Si ← Si ∪S′i ;2

ti ←max{ti , t ′i };3

while |Si |> τ do4

ti←mine∈Si expiry(e, i) ;5

Si ← Si\{e : expiry(e, i) = ti};6

multiple times, the resulting sample is the same as if it had been observed only once.

Proof. Order insensitivity is easy to see sinceSi is the set ofτ elements inTi with the largest expiry

times, and this is independent of the order in which elementsarrive. To prove duplicate insensitivity,

we observe that if the same elemente= (v,w, t, id) is observed twice, the function expiry(e, i) yields

the same outcome, and henceTi is unchanged, from whichSi is correctly derived.

Theorem 3.3.1.Suppose two samples Si and S′i were constructed using the same hash function h on

two different streams R and R′ respectively. Then Si and S′i can be merged to give a sample of R∪R′.

Proof. To merge samplesSi andS′i from two (potentially overlapping) streamsR andR′, we observe

that the requiredith level sample ofR∪R′ is a subset of theτ elements with the largest expiry times in

Ti ∪T′ i, after discarding duplicates. This can easily be computed from Si andS′i . The formal algorithm

is given in Algorithm9.

Since it is easy to merge together the sketches from distributed observers, for simplicity the subse-

quent discussion is framed from the perspective of a single stream. We note that the sketch resulting
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from mergingSandS′ gives the same correctness and accuracy with respect toR∪R′ as didSandS′

with respect toRandR′ respectively.

Theorem 3.3.2(Space and Time Complexity). The space complexity of the sketch for integral decay is

O(Mτ) units, where each unit is an input observation(v,w, t, id). The expected time for each update is

O(logw(logτ + logw+ logtmax)). Merging two sketches takes time O(Mτ).

Proof. The space complexity follows from the fact that the sketch consists ofM +1 samples, and each

sample contains at mostτ stream elements. For the time complexity, the sampleSi can be stored in a

priority queue ordered by expiry times. To insert a new element e into Si , it is necessary to compute

the expiry time ofe as expiry(e, i) once. This takes timeO(logw+ logtmax) (Section3.3.3). Note

that for each elemente, we can compute its expiry time at leveli exactly once and store the result

for later use. An insertion intoSi may cause an overflow, which will necessitate the discardingof

elements with the smallest expiry times. In the worst case, all elements inSi may have the same

expiry time, and may need to be discarded, leading to a cost ofO(τ + logw+ logtmax) for Si , and

a worst case time ofO(M(τ + logw+ logtmax)) in total. But the amortized cost of an insertion is

much smaller and isO(logw(logτ + logw+ logtmax)), since the total number of elements discarded

due to overflow is no more than the total number of insertions,and the cost of discarding an element

due to overflow can be charged to the cost of a corresponding insertion. The expected number of

levels into which the elemente= (v,w, t, id) is inserted is notM, but onlyO(logw), since the expected

value of|{h(x) ≤ ⌊2−i p⌋ : x∈ rc
e}| = pi|rc

e| ≈ w/2i . Thus the expected amortized time of insertion is

O(logw(logτ + logw+ logtmax)).

Two sketches can be merged in timeO(Mτ) since two priority queues (implemented as max-heaps)

of O(τ) elements each can be merged and the smallest elements discarded inO(τ) time.

3.3.3 Computation of Expiry Time

We now present an algorithm which, given an elemente= (v,w, t, id) and leveli,0≤ i ≤M, com-

putes expiry(e, i). Recall that expiry(e, i) is defined as the smallest integerκ ≥ t such that either

f (w,κ − t) = 0 (meaning|rκ
e | = 0) or |{x ∈ rκ

e : |rκ
e | > 0,h(x) ≤ ⌊2−i p⌋}| = 0. Let si

e = min{x ∈

rt
e : h(x) ∈ {0,1, . . . ,⌊2−i p⌋− 1}}. Note thatsi

e may not exist. We define∆i
e as follows. Ifsi

e exists,
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Algorithm 10 : ExpiryTime(e, i)

Input : e= (v,w, t, id), i, 0≤ i ≤M
Output : expiry(e, i)

∆i
e←MinHit

(
p,a,h(wmax· id),w · f (0)−1,⌊2−i p⌋−1

)
; /* h(x) = (ax+b) modp */1

if ∆i
e≥ 0 then /* si

e exists */2

l ← 0;3

r← tmax ;4

t ′← ⌊(l + r)/2⌋;5

while t ′ 6= l do /* Binary Search for t ′ */6

if ( f (w, t ′) > ∆i
e) then l ← t ′;7

elser← t ′;8

t ′← ⌊(l + r)/2⌋;9

return t + t ′;10

else return t ; /* si
e does not exist */11

then∆i
e = si

e−wmax· id ≥ 0; else,∆i
e = −1. In the following lemma, we show that given∆i

e, it is easy

to compute expiry(e, i).

Lemma 3.3.2. If ∆i
e≥ 0, thenexpiry(e, i) = t + t ′, where t′ = min{t̄ : f (w, t̄)≤ ∆i

e}. Further, given∆i
e,

the expiry time can be computed in time O(logtmax). If ∆i
e =−1, thenexpiry(e, i) = t.

Proof. If ∆i
e≥ 0, meaningsi

e exists, sincef (w,x) is a non-increasing function ofx, whenx becomes

large enough (≤ tmax) we can havewmax· id + f (w,x)−1 < si
e, i.e., f (w,x) ≤ ∆i

e, which further means

the range ofrt+x
e does not includesi

e. Sincesi
e is the smallest selected integer inrt

e at level i, andrt+x
e

is the smaller portion ofrt
e and does not includesi

e, sort+x
e does not have any selected integer at leveli.

In other words,ehas expired at timet +x as long asf (w,x) ≤ ∆i
e. By the definition of the expiry time,

we have expiry(e, i) = t +min{x : f (w,x)≤ ∆i
e}= t + t ′.

If ∆i
e = −1, meaningsi

e does not exist, then there is no integer inrt
e to be selected at leveli. e

expires since it was generated at timet, i.e., expiry(e, i) = t.

If ∆i
e≥ 0, we can perform a binary search on the range of[t, t + tmax] to find t ′, usingO(logtmax)

time. If ∆i
e =−1, simply set expiry(e, i) = t.

The pseudocode for ExpiryTime(), which computes expiry(e, i), is formally presented in Algo-

rithm 10.
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Algorithm 11 : MinHit(p,a,u,n,L)

Input : p > 0, 0≤ a < p, 0≤ u < p, n≥ 0, L≥ 0
Output : d = min{i : 0≤ i ≤ n,(u+ i ·a) mod p≤ L}, if d exists; otherwise,−1.

/* Recursive Call Exit Conditions */

if (p≤ L or u≤ L) then return 0;1

else if(a = 0) then return −1;2

else3

Compute|S0| ; /* S= {u,(u+a) modp, · · · ,(u+n·a) modp}= S0S1 · · ·Sk */4

if (|S0|= n+1) then return −1;5

else if(a = 1) then return (p−u);6

/* Recursive Calls */

r ← p moda ;7

Computek, f1 ; /* f1 is the first element of S1 */8

if (a− r ≤ a/2) then d←MinHit(a,a− r, f1,k−1,L) ;9

else d←MinHit (a, r,(a− f1 +L) moda,k−1,L) ;10

/* Recursive Call Returns */

if (d 6=−1) then11

Computefd+1 ;12

d← [(d+1)p−u+ fd+1]/a ;13

return d;14

We can now focus on the efficient computation of∆i
e. One possible solution, presented in a pre-

liminary version of this work (30), is a binary search over the rangert
e to find ∆i

e. This approach takes

O(logwlogtmax) time since in each step of the binary search, a RangeSample (67) operation is invoked,

which takesO(logw) time, and there areO(logtmax) such steps in the binary search.

We now present a faster algorithm for computing∆i
e, called MinHit() which is described formally

in Algorithm 11. Given hash functionh and sample leveli, in O(logw) time, MinHit() returns∆i
e.

Let Zp denote the ring of non-negative integers modulop. Let l = wmax· id and r = wmax· id +

f (w,0)− 1, the left and right end points ofrt
e. The sequenceh(l),h(l + 1), . . . ,h(r) is an arithmetic

progression overZp with a common differencea. The task of finding∆i
e reduces to the following

problem by settingu = h(l) andn = f (w,0)−1,L = ⌊p2−i⌋−1.

Problem 1. Given integers p> 0, 0≤ a < p, 0≤ u < p, n≥ 0, L≥ 0, compute d, which is defined as

follows. If set P= { j : 0≤ j ≤ n,(u+ j ·a) modp≤ L} 6= /0, then d= min(P); else, d=−1.

Let Sdenote the following arithmetic progression onZp: 〈u modp,(u+a) modp, . . . ,(u+n·a)
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modp〉. Let S[i] denote(u+ i ·a) modp, the ith number inS. Problem1 can be restated as: find the

smallest integerj,0≤ j ≤ n, such thatS[ j]≤ L.

Note that ifL≥ p, then obviouslyd = 0. Thus we consider the caseL < p. Similar to the approach

in (67), we divideS into multiple subsequences:S= S0S1 . . .Sk, as follows:S0 = 〈S[0],S[1] . . . ,S[i]〉,

wherei is the smallest natural number such thatS[i] > S[i +1]. The subsequencesSj , j > 0, are defined

inductively. If Sj−1 = 〈S[t],S[t + 1] . . . ,S[m]〉, thenSj = 〈S[m+ 1],S[m+ 2], . . . ,S[r]〉, wherer is the

smallest number such thatr > m+1 andS[r] > S[r +1]; if no suchr exists, thenS[r] = S[n]. Note that

if Sj = 〈S[t],S[t + 1], . . . ,S[m]〉, then〈S[t],S[t + 1], . . . ,S[m]〉 are in ascending order and ifj > 0 then

S[t] < a. Let fi denote the first element inSi . Let sequenceF = 〈 f0, f1, . . . , fk〉. Let |Si | denote the

number of elements inSi , 0≤ i ≤ k.

We first observe the critical fact that ifP 6= /0, ((u+ d ·a) modp) must be a member ofF . More

precisely, we have the following lemma.

Lemma 3.3.3. If d 6=−1, then S[d] = fm∈ F, where m= min{i : 0≤ i ≤ k, fi ≤ L}.

Proof. First, we proveS[d] ∈ F. SupposeS[d] 6∈ F andS[d] ∈ St , for somet, 0≤ t ≤ k. Let ft = S[d′].

Note thatd′ < d. SinceS[d] 6∈ F, we haveft ≤ S[d] ≤ L. Becaused′ < d, if d′ is not returned,d will

not be returned either. This yields a contradiction. Second, we proveS[d] = fm. SupposeS[d] = fm′ ,

wherem′ > m. Let fm = S[d′]. Note thatd′ < d asm< m′. Sinced′ < d andS[d′] ≤ L, if d′ is not

returned,d will not be returned either. This is also a contradiction.

The next lemma shows that usingmand fm in Lemma3.3.3, we can obtaind directly.

Lemma 3.3.4. If m exists, then d= (mp− f0 + fm)/a.

Proof. Let S′ = S[0], . . . ,S[d] denote the sub-sequence starting fromf0 to fm in S, so S[0] = f0 and

S[d] = fm. The distance that has been traveled in the progression overthe ringZp from f0 to fm is

(mp− f0 + fm). Since the common difference in the progression isa, we haved = (mp− f0 + fm)/a.

Note that f0 = u modp is known.

The next observation from (67) is crucial for findingm.

Observation 3.3.2(Observation 2, Section 3.1 (67)). SequencēF = F \{ f0} is an arithmetic progres-

sion over Za, with common difference a− r (or −r equivalently), where r= p moda.
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So, we have two possibilities: (1) Iff0 ≤ L, thenm= 0 and fm = f0, thusd = 0. (2) Else, the task

of finding m is a new instance of Problem1 of a smaller size by setting:

pnew= a, anew= a− r, unew= f1, nnew= k−1, Lnew= L

Note that oncem is known, we can directly obtainfm = ( f1 +(m−1)(a− r)) moda.

However, because of the similar argument in (67), the reduction may not always be useful since

a− r may not be much smaller thana. However, since at least one ofa− r or r is less than or equal to

a/2, we can choose to work with the smaller ofa− r or r as follows. The benefit of working with the

smaller one will be shown later in the time and space complexity analysis.

Reduction in Case 1:a− r ≤ a/2 We work witha− r. Problem1 is recursively reduced to a

new instance of Problem1 of a smaller size that findsmover sequencēF by setting:

pnew= a, anew= a− r, unew= f1, nnew= k−1, Lnew= L

Reduction in Case 2:r < a/2 We work withr. In this case, things are a bit complex. First we

visualize the intuition with the help of Figure3.2. Note thatF̄ = 〈 f1, f2, . . . , fk〉 is a sequence of points

lining up along the ring ofZa with common differencea− r > a/2. For simplicity, we only show the

first few elements in̄F, say〈 f1, f2, . . . , f5〉. We want to find the first point in sequencēF that is within

the dark range[0,L] in Figure3.2(a).

Note that our goal is to makeanew to ber in the parameter setting of the new instance of Problem1

for findingm, so we flip the ring ofZa along with the points on it (Figure3.2(a)) and get the result shown

in Figure3.2(b). After this flipping, the points in̄F comprise a new sequencēF ′= 〈 f ′1, f ′2, . . . , f ′k〉, where

f ′i = (a− fi) moda, 1≤ i ≤ k, the dark range[0,L] is mapped to the new one[a− L,a− 1]∪{0}.

Note thatF̄ ′ is an arithmetic progression overZa with common different−(a− r) moda = r. Let

m′ = min{i : a− L ≤ f ′i ≤ a− 1 or f ′i = 0,1≤ i ≤ k}, i.e., f ′m is the first point inF̄ ′ such thatf ′m is

within the dark range in Figure3.2(b). Obviouslym′ = m, as we did not change the relative positions

of all the points and the dark range during the flipping. Note that the idea of flipping the ring is

implicitly proposed in (67), however, it is not clear how to further apply the techniquein (67) to find
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m′.

Our new idea is to shift the origin of the ring ofZa in Figure3.2(b)by a distance ofL in a counter-

clockwise direction without moving all the points and the dark range, resulting in Figure3.2(c). After

this shifting, sequencēF ′ in Figure3.2(b) is mapped to a new sequencēF ′′ = 〈 f ′′1 , f ′′2 , . . . , f ′′k 〉 in Fig-

ure 3.2(c), where f ′′i = ( f ′i + L) moda, and the dark range in Figure3.2(b) is mapped to[0,L] in

Figure3.2(c). Let m′′ = min{i : 0≤ f ′′i ≤ L,1≤ i ≤ k}, i.e., fm′′ is the first point inF̄ ′′ such thatfm′′

is within the dark range[0,L] in Figure3.2(c). Obviouslym′′ = m′, as we did not change the relative

positions of all the points and the dark range during the shifting of the origin in Figure3.2(b). This fur-

ther impliesm′′ = m. Therefore, Problem1 can be recursively reduced to a smaller problem of finding

m′′ over sequencēF ′′ by setting:

pnew= a, anew= r, unew= (a− f1 +L) moda, nnew= k−1, Lnew= L

We note that the idea of shifting the origin of the ring is verysimple and useful. Using this idea

simplifies theHits algorithm in (67) since all the additional operations dealing with the effect of flipping

the ring can be omitted.

The above visualized intuition in case 2 is validated by the following lemma.

Lemma 3.3.5. Given p,a,u,n,L as in Problem1, set P= {i : 0≤ i ≤ n,(u+ i ·a) modp≤ L} and

P′ = { j : 0≤ j ≤ n,((p−u+L) modp+ j · (p−a)) modp≤ L}, then:

P = P′

Proof. (i) P⊆ P′. Supposeγ ∈ P, then 0≤ γ ≤ n and(u+ γ ·a) modp≤ L. We proveγ ∈ P′.

[(p−u+L) modp+ γ · (p−a)] modp

= [p−u+L+ γ · (p−a)] modp

= [L− (u+ γ ·a)] modp

= [L− (u+ γ ·a) modp] modp



www.manaraa.com

63

0
L

f1

f4

f3

f2

a-r

180o

f5

(a) Ring ofZa and SequencēF
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Figure 3.2 Findfm∈ F̄ over the Ring ofZa in the Case ofr < a/2

Since 0≤ (u+ γ ·a) modp≤ L, we have 0≤ [L− (u+ γ ·a) modp] modp≤ L. Thusγ ∈ P′.

(ii) P′ ⊆ P. Supposeγ ∈ P′, then 0≤ γ ≤ n and[(p−u+L) modp+ γ · (p−a)] modp≤ L. We

proveγ ∈ P.

[(p−u+L) modp+ γ · (p−a)] modp

= [L− (u+ γ ·a) modp] modp

≤ L

If (u+ γ · a) modp > L, say (u+ γ · a) modp = L + σ < P for someσ > 0, from the above

inequality, we can have that(−σ) modp = p−σ ≤ L, i.e., L + σ ≥ P, this yields a contradiction.

Therefore,(u+ γ ·a) modp≤ L. So,γ ∈ P.

SinceP = P′, then the Problem1 with the settingpnew= a, anew= a− r, unew= f1, nnew= k−1,

Lnew = L and the Problem1 with the settingpnew = a, anew = r, unew = (a− f1 + L) moda, nnew =

k−1,Lnew= L return the same answer.

Lemma 3.3.6. The algorithmMinHit(p,a,u,n,L) (shown in Algorithm11) computes d in Problem1

in time O(logn) and space O(logp+ logn).

Proof. Correctness. Recall that MinHit(p,a,u,n,L) should returnd = min{i : 0≤ i ≤ n,(u+ i · a)

modp≤ L}, if such d exists; otherwise, returnd = −1. Clearly, if p≤ L or u≤ L, d = 0. Line 1
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correctly handles this scenario; Else, ifa = 0, which means all the integers in sequenceSare equal to

u, since after line1 we knowu > L, d = −1 is returned in line2; Else, ifS= S0, since after line1 we

know f0 > L, all the integers inSare greater thanL, thusd = −1 is returned at line5; Else, if a = 1,

since|S| > |S0|, we can easily findf1 = S[p−u] = 0≤ L, thusd = p−u is returned by line6. If all

the above conditions are not satisfied, we havea > 1,u > L,L < p, |S| > |S0|. Since f0 = u > L, by

Lemma3.3.3, if d 6= −1, we knowS[d] ∈ F̄. Because of Observation3.3.2, we can make a recursive

call at lines9 or 10, to find j, 1≤ j ≤ k, such thatf j = S[d]. Because of Lemma3.3.5, lines9 and10

return the same result (with different time cost though). Using the formula presented in Lemma3.3.4,

the answer for the original problem is calculated and returned by lines11–14using the answer from the

recursive call at either step9 or 10. Therefore, MinHit(p,a,u,n,L) correctly returnsd as the answer

for Problem1.

Time Complexity. We assume that the additions, multiplications and divisions take unit time. It

is clear that lines1–8 and11–14 can be computed in constant time. In each recursive call at lines9

and line10, becausennew≤ ⌈n ·a/p⌉ anda≤ p/2 always hold in every recursive call, thus we have

nnew≤ n/2, which yields the time cost of MinHit(p,a,u,n,L) is O(logn).

Space Complexity. In each recursive call, MinHit() needs to store a constant number of local

variables such asp,a,n,etc.. Sincep dominatesa, u andL (if L ≥ p, then MinHit() returns without

recursive calls), each recursive call needsO(logp+ logn) stack space. Since the depth of the recursion

is no more than logn, the space cost isO(logn(log p+ logn)). Using a similar argument as in (67),

in general MinHit(p1, p2, p3, p4, p5) = β + γ MinHit(p′1, p′2, p′3, p′4, p′5), whereβ andγ are functions of

p1, . . . , p5. This procedure can be implemented using tail recursion, which does not need to allocate

space for the stack storing the state of each recursive step and does not need to tear down the stack

when it returns. Thus, the space cost can be reduced toO(logp+ logn).

Theorem 3.3.3.Given a stream element e= (v,w, t, id) and the sample level i,0≤ i ≤M, expiry(e, i)

can be computed in time O(logw+ logtmax) using space O(logp+ logw).

Proof. MinHit () can compute∆i
e in O(logw) time using spaceO(logp+ logw). Due to Lemma3.3.2,

given∆i
e algorithm ExpiryTime() computes expiry(e, i) using additionalO(logtmax) time for the binary

search.
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Algorithm 12 : DecayedSumQuery(c)

ℓ = min{i : 0≤ i ≤M, ti ≤ c} ;1

if ℓ does not existthen return ; /* the algorithm fails */2

if ℓ existsthen return 1
pℓ

∑e∈Sℓ
RangeSample(rc

e, ℓ);3

Faster Computation of Expiry Time In some cases, the expiry time can be computed faster than

using the above algorithm. In particular, it can be computedin O(logw) time, if the decay functionf has

the following property: given an initial weightw and decayed weightw′ ≤w, min{x : f (w,x) = w′} can

be computed in a constant number of steps. This includes a large class of decay functions. For example,

for the integral version of exponential decayf (w,x) = ⌊w/ax⌋, given∆i
e≥ 0 (note thatw′ = ∆i

e+ 1),

which is computedO(logw) time, the expiry time can be computed in a constant number of steps

through expiry(e, i) =
⌊
loga(w/(∆i

e+1))
⌋
+ t +1, wheree= (v,w, id, t). A similar observation is true

for the integral version of polynomial decayf (w,x) = ⌊w · (x+ 1)−a⌋. For the sliding window decay,

given∆i
e≥ 0, then expiry(e, i) = t +W, wheree= (v,w, t, id) andW is the window size.

3.3.4 Computing Decayed Aggregates Using the Sketch

We now describe how to compute a variety of decayed aggregates using the sketchS. Fori = 0. . .M,

let pi = ⌊p2−i⌋/p denote the sampling probability at leveli.

Decayed Sum We begin with the decayed sum:

V = ∑
(v,w,t,id)∈D

f (w,c− t)

For computing the decayed sum, let the maximum size of a sample beτ = 60/ε2, and the maximum

number of levels beM = ⌈logwmax+ logidmax⌉.

Theorem 3.3.4.For any integral decay function f , Algorithm12 yields an estimator̂V of V such that

Pr[|V̂−V| < εV] > 2/3. The time taken to answer a query for the sum is O(logM +(1/ε2) logwmax).

The expected time for each update is O(logw(log(1/ε)+ logw+ logtmax)). The space complexity is

O((1/ε2)(logwmax+ logidmax)).



www.manaraa.com

66

Proof. We show the correctness of our algorithm for the sum through areduction to the range-efficient

algorithm for counting distinct elements from (67) (we refer to this algorithm as the PT algorithm, for

the initials of the authors of (67)). Suppose a query for the sum was posed at timec. Consider the

streamI = {rc
e : e∈ R}, which is defined on the weights of the different stream elements when the

query is posed. From Observation3.3.1, we have|∪r∈I r|= V.

Consider the processing of the streamI by the PT algorithm. The algorithm samples the ranges

in I into different levels using hash functionh. When asked for an estimate of the size of∪r∈I r,

the PT algorithm uses the smallest level, sayℓ′, such that the|{e∈ D : RangeSample(rc
e, ℓ
′) > 0}| ≤ τ ,

and returns an estimateY = (1/pℓ′)∑e∈D RangeSample(rc
e, ℓ
′). From Theorem 1 in (67), Y satisfies the

condition Pr[|Y−V| < εV] > 2/3 if we choose the sample sizeτ = 60/ε2, and number of levelsM

such thatM > logVmax whereVmax is an upper bound onV. Sincewmaxidmax is an upper bound onV

(each distinctid can contribute at mostwmax to the decayed sum), our choice ofM satisfies the above

condition.

Consider the sampleSℓ used by Algorithm12to answer a query for the sum. Supposeℓ exists, then

ℓ is the smallest integer such thattℓ ≤ c. For everyi < ℓ, we haveti > c, implying thatSi has discarded

at least one elemente such that RangeSample(rc
e, i) > 0. Thus for leveli < ℓ, it must be true that|{e :

RangeSample(rc
e, i) > 0}|> τ , and similarly for levelℓ, it must be true that|{e : RangeSample(rc

e, ℓ) >

0}| ≤ τ . Thus, if levelℓ exists, thenℓ = ℓ′, and the estimate returned by our algorithm is exactlyY,

and the theorem is proved. Ifℓ does not exist, then it must be true that for every leveli,0≤ i ≤ M,

|{e∈ D : RangeSample(rc
e, i) > 0}| > τ , and thus the PT algorithm also fails to find an estimate.

For the time complexity of a query, observe that finding the right levelℓ can be done inO(logM)

time by organizing thetis in a search structure, and onceℓ has been found, the function RangeSample()

has to be called on theO(τ) elements inSℓ, which takes a furtherO(logwmax) time per call to RangeSample().

The expected time for each update and the space complexity directly follows from Theorem3.3.2.

We note that typically one wants a guarantee that the failureprobability isδ ≪ 1
3. To give such

a guarantee, we can keepΘ(log1/δ ) independent copies of the sketch (based on different hash func-

tions), and take the median of the estimates. A standard Chernoff bounds argument shows that the

median estimate is accurate withinεV with probability at least 1−δ .
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Selectivity Estimation Now we consider the estimation of the selectivity

Q =
∑(v,w,t,id)∈D P(v,w) f (w,c− t)

∑(v,w,t,id)∈D f (w,c− t)

whereP(v,w) is a predicate given at the query time. We return the selectivity of sampleSℓ using

the predicateP as the estimate ofQ, whereSℓ is the lowest numbered sample that does not have any

discarded element whose expiry time is larger thanc. The formal algorithm is given in Algorithm13.

We show that by settingτ = 492/ε2 andM = ⌈logwmax+ logidmax⌉, we can get Theorem3.3.5.

The following process only helps visualize the proof, and isnot executed by the algorithm. Since

the sketch is duplicate insensitive (Lemma3.3.1), we simply consider streamD, which is the set of

distinct elements in streamR. At query timec, streamD is converted to be a stream of intervals

D′ =
{

rc
d : d ∈ D

}
. Note thatd = (v,w, t, id) andrc

d = [wmax∗ id,wmax∗ id + f (w,c− t)−1]. Further,

streamD′ is expanded to streamI of the constituent integers. For each interval[x,y] ∈ D′, streamI

consists ofx,x+1, . . . ,y. Clearly all the items inI are distinct and the decayed sumV = |I |. Given the

selectivity predicateP(v,w), let Î = {x∈ rc
d) : d = (v,w, t, id) ∈D, p(v,w) = 1} andV ′ = |I ′|. Note that

I ′ ⊆ I and the selectivity with predicateP(v,w) is Q = V ′/V, for which we compute an estimateQ′.

Recall that the sample sizeτ = C/ε2, whereC is a constant to be determined through the analysis.

The next part of this section, from Fact3.3.1through Lemma3.3.15, helps in the proof of Theo-

rem3.3.5(stated formally below). The proof idea is similar to the onefor Theorem2.3.1.

Fact 3.3.1(Fact 1 in (67)). For any i∈ [0. . .M], 1/2i+1 ≤ pi ≤ 1/2i

Lemma 3.3.7. If |D′| ≤ τ , then Q= Q′

Proof. If |D′| ≤ τ , all therc
d ∈D′ can be implicitly stored inS0, i.e., all unexpired stream elements can

be stored inS0, which can return the exactQ.

Thus, in the following part of the proof, we assume|D′|> τ .

Definition 3.3.2. For each e∈ I, for each level i= 0,1, . . . ,M, random variable xi(e) is defined as

follows: if h(e) ∈ [0,⌊p2−i⌋], then xi(e) = 1; else xi(e) = 0.
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Definition 3.3.3. For i = 0,1, . . . ,M, Ti is the set constructed by the following probabilistic process.

Start with Ti ← /0. If there exists at least one integer y∈ rc
d, where d∈ D, such that xi(y) = 1, insert d

into Ti .

Note thatTi is defined for the purpose of the proof only, but theTis are not stored by the algorithm.

For each leveli, the algorithm only stores at mostτ elements with largest expiry time.

Definition 3.3.4. For i = 0,1, . . . ,M, Xi = ∑y∈rc
d
xi(y), X′i = ∑y∈rc

d,p(v,w)=1 xi(y), where d= (v,w, t, id) ∈

D.

Lemma 3.3.8. For any e∈ rc
d,d ∈ D, E[xi(e)] = pi , σ2

xi(e)
= pi(1− pi), 0≤ i ≤M.

Proof. E[xi(e)] = Pr[xi(e) = 1] = Pr[0≤ h(e)≤ ⌊p2−i⌋] = ⌊p2−i⌋= pi .

σ2
xi(e)

= E[x2
i (e)]−E[xi(e)]2 = Pr[x2

i (e) = 1]−Pr[xi(e) = 1]2 = pi − p2
i = pi(1− pi)

Lemma 3.3.9. For i = 0,1, . . . ,M, E[Xi] = piV, σ2
Xi

= pi(1− pi)V, E[X′i ] = piV ′, σ2
X′i

= pi(1− pi)V ′

Proof. E[Xi ] = E[∑y∈rc
d
xi(y)] = |{y∈ rc

d : d ∈ D}| ·E[xi(y)] = piV. Sincexi(y)’s are pairwise indepen-

dent random variables, we have:σ2
Xi

= |{y∈ rc
d : d∈D}| ·σ2

xi (y)
= pi(1− pi)V. Similarly,E[X′i ] = piV ′,

σ2
X′i

= pi(1− pi)V ′ are true.

Definition 3.3.5. For i = 0,1, . . . ,M, define event Bi to be true if Q′ 6∈ [Q− ε ,Q+ ε ], and false other-

wise; define event Gi to be true if(1− ε/2)piV ≤ Xi ≤ (1+ ε/2)piV, false otherwise.

Definition 3.3.6. Let ℓ∗ ≥ 0 be an integer such thatE[Xℓ∗ ]≤ τ/2 andE[Xℓ∗ ] > τ/4.

Lemma 3.3.10.Levelℓ∗ is uniquely defined and exists for every input stream D.

Proof. Since|D′|> τ , E[X0] > τ . By the definition ofM = logwmaxidmax, it must be true thatV < 2M

for any input streamD, so thatE[XM]≤ 1. Since for every increment ini, E[Xi ] decreases by a factor of

2, there must be a unique level 0< ℓ∗ < M such thatE[Xℓ∗]≤ α/2 andE[Xℓ∗ ]≥ α/4.

From now on we consider the case with 0< Q≤ 1/2. By symmetry, a similar proof exists for the

case with 1/2≤Q < 1. Obviously the algorithm can returnQ′ = Q, if Q∈ {0,1}.

The following lemma shows that for levels that are less than or equal toℓ∗, Q′ is very likely to be

close toQ.
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Lemma 3.3.11.For 0≤ ℓ≤ ℓ∗,

Pr[Bℓ] <
5

C ·2ℓ∗−ℓ−4

Proof.

Pr[Bℓ] = Pr[Gℓ∧Bℓ]+Pr[Ḡℓ∧Bℓ]

≤ Pr[Bℓ|Gℓ] ·Pr[Gℓ]+Pr[Ḡℓ]≤ Pr[Bℓ|Gℓ]+Pr[Ḡℓ] (3.1)

Using Lemmas3.3.12and3.3.13in Equation3.1, we get:

Pr[Bℓ] <
5

C ·2ℓ∗−ℓ−4

Lemma 3.3.12.For 0≤ ℓ≤ ℓ∗,

Pr[Ḡℓ] <
1

C ·2ℓ∗−ℓ−4

Proof. By Lemma3.3.9, µXℓ
= pℓV,σ2

Xℓ
= pℓ(1− pℓ)V, and by Chebyshev’s inequality, we have

Pr[Ḡℓ] = Pr[Xℓ < (1− (ε/2))µXℓ
∨Xℓ > (1+(ε/2))µXℓ

]

= Pr[|Xℓ−µXℓ
|> (ε/2) ·µXℓ

]

≤
σ2

Xℓ

(ε/2)2µ2
Xℓ

= (1− pℓ)/
(
(ε/2)2 ·µXℓ

)

≤
1

(ε/2)2 ·µXℓ

≤
1

C ·2ℓ∗−ℓ−4

The last inequality is due to the fact:µXℓ
≥ 2ℓ∗−ℓ ·µX∗ℓ

> 2ℓ∗−ℓ ·τ/4= 2ℓ∗−ℓ−2·C/ε2, using Fact3.3.1

Lemma 3.3.13.For 0≤ ℓ≤ ℓ∗,

Pr[Bℓ|Gℓ] <
1

C ·2ℓ∗−ℓ−6

Proof.

Pr[Bℓ|Gℓ] = Pr[Q < Q′− ε |Gℓ]+Pr[Q > Q′+ ε |Gℓ]
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The proof will consist of two parts, Equations3.2and3.3.

Pr[Q+ ε < Q′|Gℓ] <
1

C ·2ℓ∗−ℓ−5 (3.2)

Pr[Q− ε > Q′|Gℓ] <
1

C ·2ℓ∗−ℓ−5 (3.3)

Proof of Equation3.2: Let Y = ∑y∈I ′ xℓ(y) = Q′Xℓ > (Q+ ε)Xℓ. By Lemma3.3.9, we haveµY =

pℓVQ, σ2
Y = pℓ(1− pℓ)VQ. Using Chebyshev’s inequality and the factXℓ ≥ (1−ε/2)pℓV, we have the

following,

Pr[Q+ ε < Q′|Gℓ] ≤ Pr[Y > (Q+ ε)Xℓ|Gℓ]

= Pr[(Y > (Q+ ε)Xℓ)∧Gℓ]/Pr[Gℓ]

≤ Pr[Y > (Q+ ε)(1− ε/2)pℓV]/Pr[Gℓ]

= Pr[Y−µY > (Q+ ε)(1− ε/2)pℓV−µY]/Pr[Gℓ]

≤

(
σ2

Y

[(Q+ ε)(1− ε/2)pℓV−µY]2

)
/Pr[Gℓ]

=

(
pℓ(1− pℓ)VQ

[(Q+ ε)(1− ε/2)pℓV− pℓVQ]2

)
/Pr[Gℓ]

≤

(
4

ε2pℓV

)
/Pr[Gℓ] <

(
1

C ·2ℓ∗−ℓ−4

)
/

(
1−

1
C ·2ℓ∗−ℓ−4

)

<
1

C ·2ℓ∗−ℓ−5

The last three inequalities use the facts:(1− pℓ)Q< 1, (Q+ε)(1−ε/2)≥Q+ε/2 due to 0< ε <

Q≤ 1/2, pℓV > 2ℓ∗−ℓτ/4 and choosingC≥ 32.

Proof of Equation3.3: By symmetry, the proof is similar as the one for Equation3.2. Therefore,

Pr[Bℓ|Gℓ] <
1

C ·2ℓ∗−ℓ−6

Lemma 3.3.14.
ℓ=ℓ∗

∑
ℓ=0

Pr[Bℓ] <
160
C
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Proof. The proof directly follows from Lemma3.3.11.

ℓ=ℓ∗

∑
ℓ=0

Pr[Bℓ] =
ℓ=ℓ∗

∑
ℓ=0

5
C ·2ℓ∗−ℓ−4 =

80
C

ℓ∗

∑
i=0

1
2i <

160
C

Lemma 3.3.15.

Pr[ℓ > ℓ∗] <
4
C

Proof. If ℓ > ℓ⋆, it follows thatXℓ⋆ > |Tℓ⋆| > τ , else the algorithm would have stopped at a level less

than or equal toℓ⋆. Thus, Pr[ℓ > ℓ⋆] ≤ Pr[Xℓ⋆ > τ ]. Let Y = Xℓ⋆. By Lemma3.3.9, Chebyshev’s

inequality and the factµY < τ/2, we have

Pr[ℓ > ℓ⋆]≤ Pr[Y > τ ]≤ Pr[Y > 2µY] = Pr[Y−µY > µY] =
σ2

Y

µ2
Y

=
pℓ(1− pℓ)V

p2
ℓV

2
=

1− pℓ

pℓV

SinceµY = pℓV > τ/4, we have

Pr[ℓ > ℓ⋆]≤
1− pℓ

τ/4
< 4/τ =

4
C

ε2 <
4
C

Theorem 3.3.5. For any integral decay function f , Algorithm13 yields an estimateQ̂ of Q such

that Pr[|Q̂−Q| < ε ] > 2/3. The time taken to answer a query for the selectivity of P is O(logM +

(1/ε2) logwmax). The expected time for each update is O(logw(log(1/ε) + logw+ logtmax)). The

space complexity is O((1/ε2)(logwmax+ logidmax)).

Proof. Let f denote the probability that the algorithm fails to return anε-approximate selectivity esti-

mation ofD. By using Lemmas3.3.14and3.3.15andC = 492, we get:

f = Pr[ℓ > M]+Pr[
M⋃

i=0

(ℓ = i)∧Bi]≤ Pr[ℓ > ℓ⋆]+
ℓ⋆

∑
i=0

Pr[Bi] <
164
C

=
1
3

The query time complexity analysis is similar to the one for the sum in Theorem3.3.4. The expected

time for each update and the space complexity directly follows from Theorem3.3.2.
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Algorithm 13 : DecayedSelectivityQuery(P,c)

ℓ = min{i : 0≤ i ≤M, ti ≤ c} ;1

if ℓ does not existthen return ; /* the algorithm fails */2

if ℓ existsthen return
∑e=(v,w,t,id)∈Sℓ

RangeSample(rc
e,ℓ)·P(v,w)

∑e∈Sℓ
RangeSample(rc

e,ℓ)
;

3

As in the sum case, we can amplify the probability of success to (1− δ ) by taking the median of

Θ(log1/δ ) repetitions of the data structure (based on different hash functions).

Theorem 3.3.6.For any integral decay function f , it is possible to answer queries forε-approximate

φ -quantiles and frequent items queries using the sketch, in time O(logM +(1/ε2) log(wmax/ε)). The

expected time for each update is O(logw(log(1/ε)+ logw+ logtmax)).The space complexity is

O((1/ε2)(logwmax+ logidmax)).

Proof. The expected time for each update and the space complexity directly follows from Theo-

rem3.3.2. Now we show how to reduce a sequence of problems to instancesof selectivity estimation.

To answer the query for the aggregate of interest, we first findthe appropriate weighted sampleSℓ in

logM time, whereℓ is defined (as before) as the smallest integer such thattℓ < c.

• Rank. A rank estimation query for a valueν asks to estimate the (weighted) fraction of elements

whose valuev is at mostν . This is encoded by a predicateP≤ν such thatP≤ν(v,w) = 1 if v≤ ν ,

else 0. Clearly, this can be solved using the above analysis with additive error at mostε .

• Median. The median is the item whose rank is 0.5. To find the median, we can sortSℓ by value

in O(τ logτ) time, then evaluate the rank of every distinct value in the sample and return the

median ofSℓ as the median of the stream with an additionalO(τ logwmax) time cost. Due to the

argument about the rank estimation, we have that the median of Sℓ has a rank of 0.5 over the

stream with additive error at mostε with probability at least 1−δ .

• Quantiles. Quantiles generalize the median to find items whose ranks aremultiples ofφ , e.g.

the quintiles, which are elements at ranks 0.2, 0.4, 0.6 and 0.8. Again, sortSℓ by value and return

theφ -quantile ofSℓ as theφ -quantile of the stream with additive error at mostε with probability

at least 1−δ . The argument is similar to the one for the median.
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• Frequent items. SortSℓ in O(τ logτ) time, then evaluate the frequency of every distinct value

in Sℓ with anotherO(τ logwmax) time cost. We can return those values whose frequency inSℓ is

φ or more as the frequent items in the stream, because for each returned valueν , regarding the

predicate “P=ν(v,w) = 1 if v = ν”, the selectivity ofν , which is also the frequency ofν , in the

stream isφ or more with additive error at mostε with probability at least 1−δ .

3.4 Decomposable Decay Functions via Sliding Window

3.4.1 Sliding Window Decay

Recall that a sliding window decay function, given a window size W, is defined asfW(w,x) = w

if x < W, and fW(w,x) = 0 otherwise (Section1.4.1). As already observed, the sliding window decay

function is a perfect example of an integral decay function,and hence we can use the algorithm from

Section3.3. We can compute the expiry time of any elemente at levelℓ in logw time as(t +W) if

∆ℓ
e≥ 0; t, otherwise. We can prove a stronger result though: If we setf (w,x) = w for all x≥ 0 when

inserting the element (i.e., elemente never expires at levelℓ) unless∆ℓ
e < 0, and discard the element

with the oldest timestamp when the sample is full, we can keepa single data structure that is good for

anysliding window sizeW < ∞, where anyW can be specified after the data structure has been created,

to return a good estimate of the aggregates.

Theorem 3.4.1.Our data structure can answer sliding window sum and selectivity queries where the

parameter W is provided at query time. Precisely, forτ = O(1/ε2) and M= O(logwmax+ logidmax),

we can provide an estimatêV of the sliding window decayed sum, V , such thatPr[|V̂−V| < εV] > 2
3

and an estimatêQ of the sliding window decayed selectivity, Q, such thatPr[|Q̂−Q| < ε ] > 2
3. The

time to answer either query is O(logM + τ).

Proof. Observe that for all parametersW, at any levelℓ, over the set of elemente= (v,w, t, id) where

∆ℓ
e≥ 0, the expiryorder is the same:ej expires beforeek if and only if t j < tk. So we keep the data

structure as usual, but instead of aggressively expiring items, we keep theτ most recent items at each

level i asSi . Let ti denote the largest timestamp of the discarded items from level i. We only have to
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(a) (b) (c)

Figure 3.3 Reduction of a decomposable decay function to sliding window: (a)
a sample decay function (b) breaking the decay function intosliding
windows every time step (c) computing sliding windows only for the
subset of stored timestamps.

updateSi when a new iteme with ∆ℓ
e≥ 0 arrives in leveli. If there are fewer thanτ items at the level,

we retain it. Otherwise, we either reject the new item ift ≤ ti, or else retain it, eject the oldest item

in theSi , and updateti accordingly. For both sum and selectivity estimation, we find the lowest level

where no elements which fall within the window have expired—this is equivalent to the levelℓ from

before. From this level, we can extract the sample of items which fall within the window, which are

exactly the set we would have if we had enforced the expiry times. Hence, we obtain the guarantees

that follow from Theorems3.3.4and3.3.5.

At the time of the query, for the selected sample, we need to compute the contribution of each range

to the aggregate – this can be done through a call to the RangeSample routine. We can make the query

time smaller at the cost of increased processing time per element (but the same asymptotic complexity

for the processing time per element) by calling the RangeSample routine during insertion, and not

needing to recompute this at the query time. This yields the desired time complexity of processing an

element and of the query time.

Similarly, we can amplify the probability of success to(1− δ ) by taking the median ofΘ(1/δ )

repetitions of the data structures, each of which is based ondifferent hash functions.

3.4.2 Reduction from a Decomposable Decay Function to Sliding Window Decay

In this section, we show that for any decomposable decay function of the form f (w,x) = w·g(x), the

computation of decayed aggregates can be reduced to the computation of aggregates over sliding win-

dow decay. This randomized reduction generalizes a (deterministic) idea from Cohen and Strauss (21):
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rewrite the decayed computation as the combination of many sliding window queries, over different

sized windows. We further show how this reduction can be donein a time-efficient manner.

Selectivity Estimation

Lemma 3.4.1. Selectivity estimation using any decomposable decay function f(w,x) = w·g(x) can be

rewritten as the combination of at most2c sliding window queries, where c is the current time.

Proof. Let the set of distinct observations in the stream (now sorted by timestamps) beD = 〈e1 =

(v1,w1, t1, id1), e2 = (v2,w2, t2, id2), . . . , en = (vn,wn, tn, idn)〉. The decayed selectivity ofP at timec

Q = ∑
(v,w,t,id)∈D

w ·P(v,w) ·g(c− t)/ ∑
(v,w,t,id)∈D

w ·g(c− t), (3.4)

This can be rewritten asQ = A/B where,

A = g(c− t1)
n

∑
i=1

wiP(vi ,wi)+
tn

∑
t=t1+1

(

[g(c− t)−g(c− t +1)] · ∑
{i:ti≥t}

P(vi ,wi)wi

)

B = g(c− t1)
n

∑
i=1

wi +
tn

∑
t=t1+1

(
[g(c− t)−g(c− t +1)] · ∑

{i:ti≥t}

wi

)

We computeA andB separately; first, considerB, which is equivalent toV, the decayed sum under

the functionw · g(x). Write VW for the decayed sum under the sliding window of sizeW. We can

computeV̂ = ∑tn
t=t1+1([g(c− t)−g(c− t +1)] ·Vc−t), using the sliding window algorithm for the sum

to estimate eachVc−t , from t = t1 + 1 till tn. We also add(∑i wi)g(c− t1), by tracking∑i wi exactly.

Applying our algorithm, each sliding window queryVW is accurate up to a(1± ε) relative error with

probability at least 1− δ , so taking the sum of(tn− t1) ≤ c such queries yields an answer that is

accurate with a(1±ε) factor with probability at least 1−cδ , by the union bound. Similarly,A can also

be computed by using the sliding window algorithm for the sum. Further, the data stream over which

A is computed is a substream, which satisfies the selectivity predicate, ofD, over whichB is computed.

Thus theorem3.4.1implies each sliding window query inA is accurate up to a(±εV) additive error

with probability at least 1− δ . This analysis further yields an estimate forA with the accuracy up to

(±εV) additive error with probability at least 1− cδ . Combining the estimates forA andB and using
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τ = O(1/ε2), we get|Q′−Q| ≤ ε with probability at least(1−2cδ ), whereQ′ is the estimate ofA/B.

To give the required overall probability guarantee, we can adjust δ by a factor of 2c. Since the total

space and time taken depend only logarithmically on 1/δ , scalingδ by a factor of 2c increases the

space and time costs by a factor ofO(logc).

Theorem 3.4.2. We can answer a selectivity query using an arbitrary decomposable decay function

f (w,x) = w ·g(x) in time O(Mτ log(Mτ
δ ) log(Mτ log Mτ

δ )) to findQ̂ so thatPr[|Q− Q̂|> ε ] < δ .

Proof. Implementing the above reduction directly would be too slow, depending linearly on the range

of timestamps. However, we can improve this by making some observations on the specifics of our im-

plementation of the sliding window sum. Observe that since our algorithm stores at mostτ timestamps

at each ofM levels. So if we probe it with two timestampst j < tk such that, over all timestamps stored

in the Si samples, there is no timestampt such thatt j < t ≤ tk, then we will get the same answer for

both queries. Lett j
i denote thejth timestamp in ascending order inSi . We can compute the exact same

value for our estimate of (3.4) by only probing at these timestamps, as:

M

∑
i=0

|Si |

∑
j=1

t j
i <tmin

i−1

(g(c− t j
i )−g(c− t j+1

i ))Vc−t j
i (3.5)

where for 0≤ i ≤M, tmin
i denotes the smallest (oldest) timestamp of the items inSi , andtmin

−1 = c+ 1,

wherec is the current time (this avoids some double counting issues). This process is illustrated in

Figure3.3: we show the original decay function, and estimation at all timestamps and only a subset.

The shaded boxes denote window queries: the length is the size,W of the query, and the height gives

the value ofg(c− t j
i )−g(c− t j+1

i ).

We need to keepb = log Mτ
δ independent copies of the data structure (based on different hash

functions) to give the required accuracy guarantees. We answer a query by taking the median of the

estimates from each copy. Thus, we can generate the answer bycollecting the set of timestamps

from all b structures, and working through them in sorted order of recency. In each structure we can

incrementally work through level by level: for each subsequent timestamp, we modify the answer from

the structure that this timestamp originally came from (allother answers stay the same). We can track

the median of the answers in timeO(logb): we keep theb answers in sorted order, and one changes
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(a) Exponential Decay,
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(b) Polynomial Decay,α = 1.0
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(c) Sliding Window,W = 200s

Figure 3.4 Decayed Sum: Accuracy vs C (ε = 0.05)

each step, which can be maintained by standard dictionary data structures in timeO(logb). If we

exhaust a level in any structure, then we move to the next level and find the appropriate place based

on the current timestamp. In this way, we work through each data structure in a single linear pass,

and spend timeO(logb) for every time step we pass. Overall, we have to collect and sort O(Mτb)

timestamps, and performO(Mτb) probes, so the total time required is bounded byO(Mτblog(Mτb)).

This yields the bounds stated above.

Once selectivity can be estimated, we can use the same reductions as in the sliding window case

to compute time decayed ranks, quantiles, and frequent items, yielding the same bounds for those

problems.

Decayed Sum Computation We observe that the maintenance of the decayed sum over general

decay functions has already been handled as a subproblem within selectivity estimation.

Lemma 3.4.2. The estimation of decayed sum using an arbitrary decomposable decay function can be

rewritten as the combination of at most c sliding window queries, where c is the current time.

Theorem 3.4.3.We can answer a query for the sum using an arbitrary decomposable decay function

f (w,x) = w ·g(x) in time O(Mτ log(Mτ
δ ) log(Mτ log(Mτ

δ ))) to findV̂ such thatPr[|V̂−V|> εV] < δ ].

3.5 Experiments

In this section, we experimentally evaluate the space and time costs of the sketch, as well as its

accuracy in answering queries. We consider three popular integral decay functions: sliding window
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(b) P2: P2(v,w) = 1 iff v/w≥ 3
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Figure 3.5 Selectivity with Exponential Decay: Accuracy vsC
(ε = 0.05,β = 0.01)
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(b) P2: P2(v,w) = 1 iff v/w≥ 3
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(c) P3: P3(v,w) = 1iff v/w≥ 4

Figure 3.6 Selectivity with Polynomial Decay: Accuracy vs C(ε = 0.05,α = 1.0)
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Figure 3.7 Selectivity with Sliding Window: Accuracy vs C (ε = 0.05,W = 200
seconds)
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(a) Update Speed vs C
(ε = 0.05,α = 1.0, β = 0.01,W = 200 seconds)
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Figure 3.9 Update speed for different decay functions
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Figure 3.10 Update Speed vs Decay Degree (ε = 0.05,C = 60)
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decay, and modified versions of polynomial and exponential decay. The decay functions are defined as

follows:

(1) Sliding window decay with window sizeW: fW(w,x) = w if x ≤W, and 0 otherwise. We

experiment over a range of window sizes, ranging from 200 seconds to 25 hours.

(2) Polynomial decay:f (w,x) =
⌊

w
(x+1)α

⌋
. We useα ∈ {1.0,1.5,2.0,2.5,3}

(3) Exponential decay:f (w,x) =
⌊

w
eβx

⌋
. We useβ ∈ {0.01,0.2,0.4,0.6,0.8}

We perform the experiments for the time decayed sum as well asthe time decayed selectivity. Note

that selectivity estimation generalizes the problems of estimating therank, φ -quantilesand frequent

elements(Theorem3.3.6).

Results Our main observations from the experiments are as follows. First, the actual space used

by the sketch can be much smaller than the theoretically derived bounds, while the accuracy demand

for estimation is still met. Next, the sketch can be updated quickly in an online fashion, allowing for

high throughput data aggregation.

3.5.1 Experimental Setup

We implemented the sketch and the RangeSample algorithm (67) in C++, using gcc 3.4.6 as the

compiler and making use of data structures from the standardtemplate library (STL). The space usage

is reported in terms of the number of nodes present in the sketch after the data stream is processed. The

input stream is generated from the log of web request recordscollected on the 58th day of the 1998

World Cup (78), and has 32,355,332 elements, of which 24,498,894 are distinct. All experiments

were run on a 2.8GHz Pentium Linux machine with 2GB memory.

Data Preparation For repeatability, we present the transformation we performed on the original

data set from the 1998 World Cup. Note that these transformations are not part of the sketch that we

have designed, and are only used to create the experimental inputs. Each web request recordr is a

tuple:

〈timestamp,clientID,ob jectID,size,method,status, type,server〉. All the records are archived in (78)

in the ascending order of thetimestamp, which is the number of seconds since the Epoch. Our goal
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is to transform the set of records into a data stream which hasasynchrony in the timestamps and has a

reasonable percentage of duplicates.

STEP 1: Project eachr to a stream elemente= (v,w, t, id). (1) e.id = r.timestamp mod 86400+

r.clientID mod 100+ r.serverID mod 100. Note that “+” is the string concatenation, thusidmax =

863,999,999. The timestamp is taken modulo 86400 since all the data iscollected from a single day.

Binding

〈r.timestamp, r.clientID, r.server〉 together intoe.id results in the stream having a reasonable percent-

age of duplicates, because at a certain point of time, the number of web requests between a given pair of

client and server is very likely to be one, or a number slightly larger than one. (2)e.v= r.size mod 109.

(3) e.w = r.ob jectID mod 103, hencewmax= 999. (4)e.t = r.timestamp mod 86400.

STEP 2: Make the duplicates consistent. Note that the duplicates from Step 1 may differ in either

w or v. We sort the stream elements in ascending order ofid (hence also in increasing order oft), then

replace the duplicates with the first copy.

STEP 3: Create the asynchrony. We divide the stream into multiple substreams, such that the

elements in each substream have the sameserver. Then we interleave the substreams into a new stream

as follows. We remove the first element of a randomly selectednon-empty substream and append it

into the new stream, until all the substreams are empty.

STEP 4: Create theprocessing timeof each stream element. Sincew, t and theprocessing time

determine the decayed weight ofe when it is processed, every stream element needs to have the same

processing timein a repetition of any experiment. Theprocessing timeof e is generated as follows:

(1) Pr[delay= i] = 1
3, i ∈ {0,1,2}. (2) If the processing time of the previous element is largerthan

that of the current stream element, we assign the processingtime of the previous element to the current

element, as the processing time must be non-decreasing. Note that whenever we receive a query for the

aggregate of interest, we assume the current clock time (query time) is the processing time of the most

recently processed stream element.

3.5.2 Accuracy vs Space Usage

Recall that the theoretically derived sample size isC
ε2 for anε-approximation (with probability≥ 2

3)

of the time decayed sum (C = 60, Theorem3.3.4) and the time decayed selectivity (C = 492, Theo-
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rem 3.3.5). However, in the course of our experiments, we found that the desired accuracy could be

achieved using much smaller values ofC (and hence much smaller space) than the theoretical predic-

tion.

Figure3.4, 3.5, 3.6 and 3.7, shows the influence ofC on the accuracy of estimations of the sum

and the selectivity. In these experiments we setε = 0.05,α = 1, β = 0.01 andW = 200 seconds. We

use the following three predicates for selectivity estimation: (1) P1(v,w) = 1, if v/w≥ 2; otherwise, 0.

(2) P2(v,w) = 1, if v/w≥ 3; otherwise, 0. (3)P3(v,w) = 1, if v/w≥ 4; otherwise, 0.

With each time decay model and each value forC, we perform 10 experiments estimating the sum

over the whole stream (Figure3.4). Each dot in these figures represents an estimate for the sum. The

x-axis of the dot is the value forC used in the experiment and the y-axis represents the relative error in

the estimate for the sum. The lower bound and upper bound lines in each figure set up the boundaries

between which the dots are theε-approximations. Similarly, for each decay model, each value for

C and each predicate, we perform 10 experiments estimating the selectivity over the whole stream

(Figure3.5, 3.6 and3.7), whereas the y-axis of each dot is the additive error in the estimate for the

selectivity.

Figure3.4, 3.5, 3.6and3.7first show that not surprisingly, a largerC yields more accurate estima-

tors for both sum and selectivity. The second observation isthat even a value as low asC = 2 is good

enough to guarantee anε-approximation of the sum with probability≥ 2
3, whereasC = 1 is sufficient

in the case of the selectivity (for the predicates we considered). The second observation gives a crucial

indication that in the real applications of this sketch, theactual value forC can be much smaller than

the theoretical predictions.

We next studied the influence ofC on the sketch size using four different decay functions in Fig-

ure 3.8. Besides the exponential decay and polynomial decay, for which α ,β are assigned the same

values as in Figure3.4, 3.5and3.6, we also study the size of the sketch using the sliding windowdecay

with window sizeW = 200 seconds andW = 25 hours. Note that all the data in the experiments was

collected within a day, therefore the sketch using the sliding window decay withW = 25 hours is a

general sketch, which has enough information to answer timedecayed sum or selectivity queries using

any decay model (Section3.4.2). Figure3.8shows that a smallerC can significantly reduce the sketch

size, e.g., ifC = 2, then the sketch size is about 10KB, whereas ifC = 20, the sketch size is about
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100KB. Figure3.8also shows that for the same value forC, the sliding window forW = 25 hours takes

the most space, which is reasonable, since it can answer the broadest class of queries.

Overall, compared with the size of the input (over 32 million), the sketch size is significantly

smaller. Note that the sketch size is independent of the input size, meaning even if the input is larger,

the sketch will not be any larger, as long as the desired accuracy remains the same. Small sketch size

is crucial for the sensor data aggregation scenario since the energy cost in the data transmission within

the network can be significantly reduced by transmitting thesketches between nodes rather than the

whole data.

3.5.3 Time Efficiency

In this section, we present experimental results for the time taken to update the sketch for different

decay functions and parameter settings. We report the updating speed in terms of the number of stream

elements processed per second. Our experiments demonstrate that overall, the sketch can be updated

quickly (in the order of 10,000 updates per second).

Figure3.9(a)shows the time (in seconds) taken to update the sketch for exponential decay, poly-

nomial decay and sliding window decay. It shows that ifC = 60, the sketch can handle about 15000

elements per second. IfC = 2, the speed of updating is more than doubled, since a smallerC yields a

smaller sketch (as shown in Figure3.8), and smaller the sketch, faster are the operations on the sketch.

Similarly, a higher accuracy demand (a smallerε) slows down the sketch update (Figure3.9(b)).

Both Figures3.9(a)and3.9(b)show that the sketch using polynomial decay has the highest time

efficiency, whereas the sketch using the sliding window decay has the lowest time efficiency. This

may come as a surprise, since exponential decay is often considered to be the “easiest” to handle, and

polynomial decay is thought to be “harder”. The reasons for our results are the parameter settings that

we used for exponential and polynomial decay, and the distribution of the processing delays. In the

experiments shown, we setα = 1.0, causing a rather “fast” polynomial decay, andβ = 0.01, causing a

rather “slow” exponential decay. Of course, even with thesesettings, exponential decay will still cause

the weights to decay “faster” than polynomial decay for veryold elements, which are being processed

long after they were generated. Due to the way we constructedour input, the processing delay of most

stream elements were within 3 seconds. As a result, for most elements, when they are processed, their
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weight in polynomial decay was smaller than their weight in exponential decay, and their weight in

sliding window decay was the largest. Since a smaller decayed weight implies an insertion into fewer

samples, and the cost of computing the expiry time for a particular level is the same for all three decay

models, polynomial decay resulted in the fastest processing time, while sliding window decay (with

window size 200 seconds) led to the slowest processing time.

In general a sketch working with a decay function that decays“faster”, i.e., a larger value forα

and β in polynomial decay and exponential decay respectively, ora smaller value forW in sliding

window decay, has better time efficiency, because a “faster”decay function makes the weight of the el-

ement smaller, hence fewer insertions are performed on the sketch. This is shown in Figure3.10(a)and

3.10(b), where for either exponential decay or polynomial decay, the time efficiency increases as the

decay becomes faster. However, at the first glance, this is not the case for the sliding window decay dis-

played in Figure3.10(c), and the update speed does not seem to change significantly withW. This is be-

cause in our experiments the ages of most elements at their processing time are no more than the small-

est window size considered, 200 seconds, therefore the decayed weights of an element at its processing

time using the sliding window decay of different window sizes (W ∈ {200,400,600,800,1000}) are

the same (equal to the original weight).

3.6 Concluding Remarks

In this chapter, we have presented a powerful result. There exists a single sketch that allows

duplicate-insensitive, distributed, and time-decayed computation of a variety of aggregates over asyn-

chronous data streams. This sketch can accommodate any integral decay function, or any decompos-

able decay function via the reduction to sliding window decay. For the class of decomposable decay

functions, the decay function need not even be known a priori, and can be presented at query time.

We experimentally show that the actual space needed by the sketch can be significantly smaller

than theoretical predictions, while still meeting the accuracy demands. Our experiments confirm that

the sketch can be updated quickly in an online fashion, allowing for high throughput data aggregation.
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CHAPTER 4. General Time-decay Based Correlated Processing

Data stream analysis frequently relies on identifying correlations and posing conditional queries

on the data after it has been seen.Correlated aggregatesform an important example of such queries,

which ask for an aggregation over one dimension of stream elements which satisfy a predicate on

another dimension. Since recent events are typically more important than older ones,time decayshould

also be applied to downweight less significant values. This chapter presents space-efficient algorithms

as well as space lower bounds for the time-decayed correlated sum, a problem at the heart of many

related aggregations. By considering different fundamental classes of decay functions, we separate

cases where efficient approximations with relative error oradditive error guarantees are possible, from

other cases where linear space is necessary to approximate.In particular, we show that no efficient

algorithms with relative error guarantees are possible forthe popular sliding window and exponential

decay models, resolving an open problem. This negative result for the exponential decay holds even

if the stream is allowed to be processed in multiple passes. The results are surprising, since efficient

approximations are known for other data stream problems under these decay models. This is a step

towards better understanding which sophisticated queriescan be answered on massive streams using

limited memory and computation.

4.1 Introduction

There has been much research on estimating aggregates alonga single dimension of a stream, such

as the median, frequency moments, entropy, etc. However, most streams consist of multi-dimensional

data. An example stream of VoIP call data records (CDRs) may have the call start time, end time, and

packet loss rate, along with identifiers such as source and destination phone numbers. It is imperative

to compute more complex multi-dimensional aggregates, especially those that can “slice and dice” the
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data across some dimensions before performing an aggregation, possibly along a different dimension.

In this chapter, we consider suchcorrelated aggregates, which are a powerful class of queries for

manipulating multi-dimensional data. These were motivated in the traditional OLAP model (18), and

subsequently for streaming data (6; 40). For example, consider the query on a VoIP CDR stream: “what

is the average packet loss rate for calls within the last 24 hours that were less than 1 minute long”? This

query involves a selection along the dimensions of call duration and call start time, and aggregation

along the third dimension of packet loss rate. Queries of this form are useful in identifying the extent

to which low call quality (high packet loss) causes customers to hang up. Another example is: “what

is the average packet loss rate for calls started within the last 24 hours with duration greater than the

median call length (within the last 24 hours)?”, which givesa statistic to monitor overall quality for

“long” calls. Such queries cannot be answered by existing streaming systems with guaranteed accuracy,

unless they explicitly store all data for the last 24 hours, which is typically infeasible.

In this chapter, we present algorithms and lower bounds for approximating time-decayed correlated

aggregates on a data stream. These queries can be captured bythree main aspects: selection along one

dimension (sayx-dimension) and aggregation along a second dimension (sayy-dimension) using time-

decayed weights defined via a third (time) dimension. The time-decay arises from the fact that in most

streams, recent data is naturally more important than olderdata, and in computing an aggregate, we

should give a greater weight to more recent data. In the examples above, the time decay arises in the

form of a sliding window of a certain duration (24 hours) overthe data stream. More generally, we

consider arbitrary time-decay functions which return a weight for each element as a non-increasing

function of its age—the time elapsed since the element was generated. Importantly, the nature of the

time-decay function will determine the extent to which the aggregate can be approximated.

We focus on thetime-decayed correlated sum(henceforth referred to as DCS), which is a funda-

mental aggregate, interesting in its own right, and to whichother aggregates can be reduced. An exact

computation of the correlated sum requires multiple passesthrough the stream, even with no time-

decay where all elements are weighted equally. Since we can afford only a single pass over the stream,

we will aim for approximate answers with accuracy guarantees. In this chapter, we present the first

streaming algorithms for estimating the DCS of a stream using limited memory, with such guarantees.

Prior work on correlated aggregates either did not have accuracy guarantees on the results (40) or else
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did not allow time-decay (6). We first define the stream model and the problem more precisely, and

then present our results.

4.1.1 Problem Formulation

Data Stream.We consider an asynchronous stream of(v,w, t) tuples, which is projected on the dimen-

sions ofvalue,weightandtime from the streamRdefined in Section1.3. When the context is clear, we

still useR= e1,e2, . . . ,en to represent the projected stream, i.e.,ei = (vi ,wi , ti). Let [m] = {0,1, . . . ,m}

denote an ordered domain wherevi is drawn from. An example data stream from applications thatcan

be captured by this data stream model is the stream of VoIP call records. There is one stream element

per call, whereti is the time the call was placed,vi is the duration of the call, andwi the packet loss

rate.

Time decay. We consider aggregates that are time-decayed. The decayed weight of a stream element

is returned by a user specified decay functionf (w,x), which take as input the initial weightw and age

x = c− t of the element, as defined in Section1.4. Note thatc denotes the current time. In this chapter,

we only consider decomposable decay functions which has theform of f (w,x) = w·g(x), as defined in

Section1.4.2.

Time-Decayed Correlated Sum.The query for the time-decayed correlated sum over streamR under

a prespecified decomposable decay-functiong is posed at timet, provides a parameterτ ≥ 0, and asks

for Sg
τ , defined as follows:

Sg
τ = ∑

ei∈R|vi≥τ
wi ·g(t− ti)

A correlated aggregate query could be: “What is the average packet loss rate for all calls which started

in the last 24 hours, and were more than 30 minutes in length?”. This query can be split into two

sub-queries: The first sub-query finds the number of stream elements(vi ,wi, ti) which satisfyvi > 30,

andti > t−24 wheret is the current time in hours. The second sub-query finds the sum of wis for all

elements(vi ,wi , ti) such thatvi > 30 andti > t−24. The average is the ratio of the two answers.

DCS lies at the heart of many other aggregates. Example time-decayed aggregates that can reduced

to DCS are the following:

• Thetime-decayed relative frequencyof a valuev, which is given by(Sg
v−Sg

v+1)/Sg
0.
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• Thesum of time-decayed weightsof elements in the range[l , r], which isSg
l −Sg

r+1.

• Thetime-decayed frequencyof range[l , r], which is(Sg
l−Sg

r+1)/Sg
0.

• The time-decayedφ -heavy hitters, which are all thev’s such that the time decayed relative fre-

quency ofv is at leastφ .

• Thetime decayed correlatedφ -quantile, which is the largestv, such that(Sg
0−Sg

v)/Sg
0 ≤ φ .

Time-Decayed Correlated Count.An important special case of DCS is thetime-decayed correlated

count(henceforth referred to as DCC), where all the weightswi are assumed to be 1. The correlated

countCg
τ is therefore:

Cg
τ = ∑

ei∈R|vi≥τ
g(t− ti)

4.1.2 Contributions

Our main result is that there exist small space algorithms for approximating DCS over an arbitrary

decay functiong with a smalladditiveerror. But, the space cost of approximating DCS with a small

relativeerror depends strongly on the nature of the decay function—this is possible on some classes of

functions using small space, while for other classes, including sliding window and exponential decay,

this is provably impossible in sublinear space. More specifically, we show:

1. Foranydecay functiong, there is a randomized algorithm for approximating DCS withbounded

additive error guarantee which uses space logarithmic in the size of the stream. This significantly

improves on previous work (40), which presented heuristics only for sliding window decay. (Sec-

tion 4.3.1)

2. On the other hand, for anyfinite decay function, defined in Section1.4.1, we show that approx-

imating DCS with a smallrelative error needs space linear in the size of the elements whose

ages are not larger than the age limit of the decay function. Because sliding window decay is a

finite decay function, the above two results resolve the openproblem posed in (6), which was

to determine the space complexity of approximating the correlated sum under sliding window

decay. (Section4.4.1)
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3. For any non-exponential converging decay function, defined in Section1.4.1, there is an algo-

rithm for approximating DCS to within a small relative errorusing space logarithmic in the

stream size, and logarithmic in the “rate” of the decay function. (Section4.3.2)

4. For any exponential decay function and super-exponential decay function, defined in Section1.4.1,

we show that the space complexity of approximating DCS with asmall relative error is linear in

the stream size, in the worst case, even if multi-pass processing of the stream is allowed. This

may be surprising, since there are simple and efficient solutions for maintaining exponentially

decayed sum exactly in the non-correlated case. (Section4.4.2)

We evaluate our techniques over real and synthetic data in Section 4.5, and observe that they can

effectively summarize massive streams in tens of kilobytes.

4.2 Prior Work

Concepts of correlated aggregation in the (non-streaming)OLAP context appear in (18). The first

work to propose correlated aggregation for streams was Gehrkeet al.(40). They assumed that data was

locally uniform to give heuristics for computing the non-decayed correlated sum where the threshold

(τ) is either an extrema (min, max) or the mean of the all the received values (vi ’s). For the sliding

window setting, they simply partition the window into fixed-length intervals, and make similar unifor-

mity assumptions for each interval. No strong guarantee on the answer quality are provided by any

of these approaches. Subsequently, Ananthakrishnaet al. (6) presented summaries that estimate the

non-decayed correlated sum withadditive errorguarantees. The problem of tracking sliding window

based correlated sums with quality guarantees was given as an open problem in (6). We show that this

relative error guarantees are not possible while using small space, whereas additive guarantees can be

obtained.

Xu et al. (79) proposed the concept of asynchronous streams. They gave a randomized algorithm

to approximate the sum and the median over sliding windows. Busch and Tirthapura (14) later gave

a deterministic algorithm for the sum. Cormodeet al. (30; 25) gave algorithms for general time de-

cay based aggregates over asynchronous streams. By definingtimestamps appropriately,non-decayed

correlated sum can be reduced to the sum of elements within a sliding window over an asynchronous
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stream. As a result, relative error bounds follow from bounds in (79; 14; 30; 25). But these methods do

not extend to accurately estimating DCS or DCC.

Dataret al. (35) presented a bucket-based technique calledexponential histogramsfor sliding win-

dows on synchronous streams. This approximates counts and related aggregates, such as sum andℓp

norms. Gibbons and Tirthapura (42) improved the worst-case performance for counts using a data

structure called awave. Going beyond sliding windows, Cohen and Strauss (21) formalized time-

decayed data aggregation, and provided strong motivating examples for non-sliding window decay. All

these works emphasized the time decay issue, but did not consider the problems of correlated aggregate

computation.

4.3 Upper Bounds

In this section, we present algorithms for approximating DCS over a streamR. The main results

are: (1) For an arbitrary decay functiong, there is a small space streaming algorithm to approximate

Sg
τ with a small additive error. (2) For any non-exponentialconvergingdecay functiong, there is small

space streaming algorithm to approximateSg
τ with a small relative error.

4.3.1 Additive Error

A predicateP(v,w) is a binary function ofv andw, used to select certain items. For example, (1)

the predicate could select only those items withv > 1000 by returning 1 for those items, and 0 for

others; (2) the predicate could select only those items withw < 100 similarly; and (3) the predicate

could select only those items with bothv> 1000 andw< 100, and so on. The time-decayed selectivity

Q of a predicateP(v,w) on a streamRof (v,w, t) tuples is defined as

Q =
∑(v,w,t)∈RP(v,w) ·w ·g(c− t)

∑(v,w,t)∈Rw ·g(c− t)

The decayed sumS is defined as:

S= ∑
(v,w,t)∈R

w ·g(c− t)
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Note thatS= Sg
0. We use the following results on time-decayed selectivity estimation from Chapter3

in our algorithm for approximating DCS with a small additiveerror.

Theorem 4.3.1(Theorems3.4.1, 3.4.2, 3.4.3). Given0 < ε < 1 and probability0< δ < 1, there exists

a small space sketch of size O((1/ε2) · log(1/δ ) · logM) that can be computed in one pass from stream

R, where M is an upper bound on S. For any decay function g givenat query time: (1) the sketch can

return an estimatêS for S such thatPr[|Ŝ−S| ≤ εS]≥ 1−δ . (2) Given predicate P(v,w) at query time,

the sketch gives an estimatêQ for the decayed selectivity Q, such thatPr[|Q̂−Q| ≤ ε ]≥ 1−δ .

The sketch designed in Chapter3 can be thought of as computing a set of fixed-sized random

samples of the stream. Each successive sample is chosen withdecreasing probability, so for a unit-

weight stream element, its probability of selection in eachsuccessive sample is 1, 1
2, 1

4, . . .. For non-unit

weight elements, the probability of selecting a stream element into the sample is also proportional to

the decayed weight of the element. The result stated in the above theorem allows DCS to be additively

approximated:

Theorem 4.3.2.For an arbitrary decay function g, there exists a small spacesketch of R that can be

computed in one pass over the stream. At any time instant, given a thresholdτ , the sketch can return

Ŝg
τ , such that|Ŝg

τ −Sg
τ | ≤ εSg

0 with probability at least1− δ . The space complexity of the sketch is

O((1/ε2) log(1/δ ) · logM), where M is an upper bound on Sg
0.

Proof. We run the sketch algorithm in Chapter3 on streamR, with approximation errorε/3 and failure

probability δ/2. Let this sketch be denoted byK . Where the functiong is implicit, we can drop it

from our notation, and simply writêSτ , Sτ in place ofŜg
τ , Sg

τ respectively.

Given τ at query time, we define a predicateP for the selectivity estimation as:P(v,w) = 1, if

v≥ τ , andP(v,w) = 0 otherwise. The selectivity ofP is Q = Sτ/S. ThenK can return estimateŝQ of

Q andŜof Ssuch that

Pr
[
|Q̂−Q|>

ε
3

]
≤ 1−

δ
2

(4.1)

Pr

[
|Ŝ−S|>

εS
3

]
≤ 1−

δ
2

(4.2)

Our estimatêSτ is given byŜτ = Ŝ·Q̂. From (4.1) and (4.2), and using the union bound on probabilities,
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we get that the following events are both true, with probability at least 1−δ .

Q−
ε
3
≤ Q̂ ≤Q+

ε
3

(4.3)

S
(

1−
ε
3

)
≤ Ŝ ≤ S

(
1+

ε
3

)
(4.4)

Using the above, and usingQ = Sτ/S, we get

Ŝτ ≤

(
Sτ

S
+ ε/3

)
·S· (1+ ε/3) = Sτ +

Sτ ε
3

+S

(
ε
3

+
ε2

9

)
≤ Sτ + εS

In the last step of the above inequality, we have used the factSτ ≤ Sandε < 1. Similarly, we get

that if (4.3) and (4.4) are true, then,̂Sτ ≥ Sτ − εS, thus completing the proof thatK can (with high

probability) provide an estimatêSg
τ such that|Ŝg

τ −Sg
τ | ≤ εSg

0

An important feature of this approach, made possible due to the flexibility of the sketch in Theo-

rem4.3.1, is that it allows the decay functiong to be specified at query time, i.e. after the streamRhas

been seen. This allows for a variety of decay models to be applied in the analysis of the stream after

the fact. Further, since the sketch is designed to handle asynchronous arrivals, the timestamps can be

arbitrary and arrivals do not need to be in timestamp order.

4.3.2 Relative Error

In this section, we present a small space sketch that can be maintained over a streamR with the

following properties. For an arbitraryconvergingdecay functiong (defined in Section1.4.1), which is

known beforehand, and a parameterτ which is provided at query time, the sketch can return an estimate

Ŝg
τ which is within a small relative error ofSg

τ . The space complexity of the sketch depends ong.

The idea behind the sketch is to maintain multiple data structures each of which solves the unde-

cayed correlated sum, and partition stream elements acrossdifferent data structures, depending on their

timestamps, following the approach of the Weight-Based Merging Histogram (WBMH), due to Cohen

and Strauss (21). In the rest of this section, we first give high level intuition, followed by a formal

description of the sketch, and a correctness proof. Finally, we describe enhancements that allow faster

insertion of stream elements into the sketch.
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Figure 4.1 Weight-based merging histograms.

4.3.2.1 Intuition

We first describe the weight-based merging histogram (21). The histogram partitions the stream

elements into buckets based on their age. Given a decay function g, and parameterε1, the sequence

bi , i ≥ 0 is defined as follows:b0 = 0, and for i > 0, bi is defined as the largest integer such that

g(bi −1)≥ g(bi−1)/(1+ ε1) (Figure4.1(a)).

For simplicity, we first describe the algorithm for the case of a strictly synchronous stream, where

the timestamp of a stream element is just its position in the stream. We later discuss the extension to

asynchronous streams. LetGi denote the interval[bi ,bi+1) so that|Gi | = bi+1− bi . Once the decay

function is given, theGis are fixed and do not change over time. The elements of the stream are

grouped into regions based on their age. Fori ≥ 0, regioni contains all stream elements whose age lies

in intervalGi.

For anyi, we haveg(bi) < g(b0)/(1+ ε1)
i, and thus we geti < log1+ε1

(g(0)/g(bi)). Since the age

of an element cannot be more thann, bi ≤ n. Thus we get that the total number of regions is no more

thanβ = ⌈log1+ε1
(g(0)/g(n))⌉. From the definition of thebis, we also have the following fact.

Fact 4.3.1. Suppose two stream elements have ages a1 and a2 so that a1 and a2 fall within the same

region. Then,
1

1+ ε1
≤

g(a1)

g(a2)
≤ 1+ ε1

The data structure maintains a set ofbuckets. Each bucket groups together stream elements whose

timestamps fall in a particular range, and maintains a smallspace summary of these elements. We say

that the bucket is “responsible” for this range of timestamps (or equivalently, a range of ages).

Suppose that the goal was to maintainSg
0, just the time-decayed sum of all stream elements. If the

current timec is such thatc modb1 = 0, then a new bucket is created for handling future elements

(Figure4.1(b)). The algorithm ensures that the number of buckets does not grow too large through
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the following rule: if two adjacent buckets are such that theage ranges that they are responsible for

are both contained within the same region, then the two buckets are merged into a single bucket. The

count within the resulting bucket is equal to the sum of the counts of the two buckets, and the resulting

bucket is responsible for the union of the ranges of timestamps the two buckets were responsible for

(Figure4.1(c)).

Due to the merging, there can be at most 2β buckets: one bucket completely contained within each

region, and one bucket straddling each boundary between tworegions. From Fact4.3.1, the weights of

all elements contained within a single bucket are close to each other, and sinceg is a converging decay

function, this remains true as the ages of the elements increase. Consequently, WBMH can approximate

Sg
0 with ε1 relative error by treating all elements in each bucket as if they shared the smallest timestamp

in the range, and scaling the corresponding weight by the total count.

However, this does not solve the more general DCS problem, since it does not allow filtering out

elements whose values are smaller thanτ . We extend the above data structure to the DCS problem by

embedding within each bucket a data structure that can answer the (undecayed) correlated sum of all

elements that were inserted into this bucket. This data structure can be any of the algorithms that can

estimate the sum of elements within a sliding window on asynchronous streams, including the sketch

designed in Chapter2 and in (25; 14): values of the elements are treated as timestamps, and a window

sizem− τ +1 is supplied at query time (wherem is an upper bound on the value).

These observations yield our new algorithm for approximating Sg
τ . We replace the simple count

for each bucket in the WBMH with a small space sketch, from either one designed in Chapter2 or in

(25). We will not assume a particular sketch for maintaining theinformation within a bucket. Instead,

our algorithm will work with any sketch that satisfies the following properties—we call such a sketch

a “bucket sketch”. Letε2 denote the accuracy parameter for such a bucket sketch.

1. The bucket sketch must concisely summarize a stream of(v,w) pairs using space polylogarithmic

in the stream size. Given parameterτ ≥ 0 at query time, the sketch must return an estimate for

∑v≥τ w, such that relative error of the estimate is withinε2.

2. It must be possible to merge two bucket sketches easily into a single sketch. More precisely,

suppose thatS1 is the sketch for a set of elementsR1 andS2 is the sketch for a set of elementsR2,

then it must be possible to merge togetherS1 andS2 to get a single sketch denoted byS= S1∪S2,



www.manaraa.com

95

such thatSretains Property1 for the set of elementsR1∪R2.

The analysis of the sketch proposed in Chapter2 explicitly shows that the above properties hold. Like-

wise, the sketch designed in (25) also has the necessary properties, since it is built on withmultiple

instances of q-digest summaries (71) which are themselves mergable. The different sketches have

slightly different time and space complexities; we state and analyze our algorithm in terms of a generic

bucket sketch, and subsequently describe the cost depending on the choice of sketch.

4.3.2.2 Formal Description and Correctness

Recall thatε is the required bound on the relative error. Our algorithm combines two data struc-

tures: the WBMH with accuracy parameterε1 = ε/2; and the bucket sketches with accuracy parameter

ε2 = ε/2. The initialization is shown in the SETBOUNDARIES procedure (Algorithm14), which cre-

ates the regionsGi by selectingb0, . . . ,bβ . For simplicity of presentation, we have assumed that the

maximum stream lengthn is known beforehand, but this is not necessary — thebi ’s can be gener-

ated incrementally, i.e.,bi does not need to be generated until element ages exceedingbi−1 have been

observed.

Algorithm 15shows the PROCESSELEMENT procedure for handling a new stream element. When-

ever the current timet satisfiest modb1 = 0, we create a new bucket to summarize the elements with

timestamps fromt to t +b1−1 and seal the last bucket which was created at timet−b1. The procedure

FINDREGIONS(t) returns the set of regions that contain buckets to be merged at time t. In the next

section we present novel methods to implement this requirement efficiently. Algorithm16 shows the

procedure RETURNAPPROXIMATION which generates the answer for a query forSg
τ at timet. Each

bucket returns an estimate for the total undecayed weights of the elements that were inserted in the

bucket and whose values are not smaller thanτ . Each of these estimates is then scaled down by a factor

of the decay function value using the correspondingt−FB as the parameter of the decay function. The

summation of these scaled estimates are returned as the estimate forSg
τ .

Theorem 4.3.3. If g is a converging decay function, for anyτ given at any time t, the algorithm

specified in Algorithm14, 15 and16can returnŜg
τ , such that(1− ε)Sg

τ ≤ Ŝg
τ ≤ (1+ ε)Sg

τ .

Proof. For the special converging decay function whereg(x) ≡ 1 (no decay), then WBMH has only
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Algorithm 14 : SetBoundaries(ε)
Task: createG0,G1, . . . ,Gβ usingε1 = ε/2 to initialize regions.

b0← 0;1

for 1≤ i ≤ β do bi ←maxx{x|(1+ ε
2)g(x−1)≥ g(bi−1)} ; /* x are integers */2

j ←−1 ; /* j is the index of the active bucket for new elements */3

one region and one bucket. So the algorithm reduces to a single bucket sketch. This sketch can directly

provide anε2 = ε/2 relative error guarantee for the estimate ofSg
τ .

The broader case is whereg(x+ 1)/g(x) is non-decreasing withx. Let {B1, . . . ,Bk} be the set

of sketch buckets at query timet. Let Ri ⊆ R be the substream that was inserted intoBi, 1≤ i ≤ k.

Since every stream element is inserted into exactly one sketch bucket at any time, theRis partitionR:
⋃k

i=1 Ri = R andRi ∩Rj = /0 if i 6= j. Note that merging two buckets just creates a new bucket for the

union of the two underlying substreams. LetSg
τ ,i = ∑ej∈Ri |vj≥τ w jg(t− j) be the DCS ofRi at timet,

1≤ i ≤ k, soSg
τ = ∑k

i=1 Sg
τ ,i . We first consider the accuracy of the estimate for eachSg

τ ,i using sketch

bucketBi , 1≤ i ≤ k.

For each(v j ,w j , j)∈Ri at any query timet, sinceFBi ≤ j ≤ LBi which impliesg(t−FBi)≤ g(t− j)≤

g(t−LBi), andg(t−LBi)/(1+ ε1)≤ g(t−FBi) (using Fact4.3.1), we have

w jg(t− j)
1+ ε1

≤
w jg(t−LBi)

1+ ε1
≤w jg(t−FBi)≤ w jg(t− j)

therefore,

1
1+ ε1

∑
ej∈Ri |vj≥τ

w jg(t− j)≤ g(t−FBi) ∑
ej∈Ri |vj≥τ

w j ≤ ∑
ej∈Ri |vj≥τ

w jg(t− j)

i.e.,
1

1+ ε1
Sg

τ ,i ≤ g(t−FBi)Qi ≤ Sg
τ ,i , whereQi = ∑

ej∈Ri |vj≥τ
w j (4.5)

Also since sketch bucketBi can returnQ̂i such that (Chapter2 or (25))

(1− ε2)Qi ≤ Q̂i ≤ (1+ ε2)Qi (4.6)
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Algorithm 15 : ProcessElement(vi ,wi, i)
Task: Insert a new element

if i modb1 = 0 then1

j← j +1;2

Initialize a new bucket sketchB j with accuracyε/2;3

FB j ← i;4

LB j ← i +b1−1 ; /* Set timestamp range covered by B j */5

Insert(vi ,wi) into B j ;6

foreach g∈ FINDREGIONS(i) do /* Set of regions with buckets to be merged at7

time i */

bmin←mint{t|t ∈Gg};8

bmax←maxt{t|t ∈Gg} ; /* Find the left and right timestamp boundary of9

region Gg */

Find bucketsB′ andB′′, such thatbmin≤ (i−LB′) < (i−FB′) < (i−LB′′) < (i−FB′′)≤ bmax ;10

/* Find buckets covered by Gg */

B← B′∪B′′ ; /* merge two buckets */11

FB← FB′′;12

LB← LB′ ;13

DropB′ andB′′14

Combining4.5and4.6, we have

1− ε2

1+ ε1
Sg

τ ,i ≤ Q̂i ·g(t−FBi)≤ (1+ ε2)S
g
τ ,i .

Now we sum all theSt
τ ,i together,i = 1,2, . . . ,k, we get

1− ε2

1+ ε1

k

∑
i=1

Sg
τ ,i ≤

k

∑
i=1

Q̂i ·g(t−FBi)≤ (1+ ε2)
k

∑
i=1

Sg
τ ,i .

i.e.,
1− ε2

1+ ε1
Sg

τ ≤ Ŝg
τ ≤ (1+ ε2)S

g
τ

Using the facts 0< ε < 1 andε1 = ε2 = ε/2, we get the stated accuracy guarantee.
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Algorithm 16 : ReturnApproximation(τ , t)

Task: Return an estimate forSg
τ

Let the set of buckets be:{B1,B2, . . . ,Bk} ; /* for some k, 1≤ k≤ 2β */1

s← 0;2

for 1≤ i ≤ k do3

Let Q̂i be result forBi usingm− τ +1 as window size;4

s← s+ Q̂i ·g(t−FBi) ; /* Approx sum of element weights in Bi with vi ≥ τ */5

return Ŝg
τ = s;6

4.3.2.3 Fast Bucket Merging

At every clock tick the WBMH maintenance algorithm needs to check whether there are buckets

that need to be merged. A naive solution is to go through all the buckets and merge those that are

covered by the same region. This procedure can severely reduce the speed of stream processing. In this

section we present an algorithm which, given the clock timet, can efficiently return the set of regions

that have buckets to be merged at timet.

Definition 4.3.1(Sketch bucketB’s capacity|B|). The capacity of bucket B is given by|B|= LB−FB+1,

where LB and FB are the largest and smallest timestamps of the elements thatwere inserted into B (as

in Algorithm15).

Definition 4.3.2(Bucket capacity in theith region). Define I0 = 1. For 0 < i < β , let Ii = |B|, where B

is any bucket such that t−FB = bi for some value of t.

In the next lemma, we show eachIi is a constant, 0< i < β , and can be directly computed.

Lemma 4.3.1. For 0 < i < β , Ii = ⌊|Gi−1|/Ii−1⌋ · Ii−1

Proof. The lemma is proved by induction. For the base case, since thecapacity of the new bucket

created inG0 is exactly equal to|G0|, no merges can happen inG0, soI1 = |G0|= ⌊|G0|/I0⌋ · I0. For the

inductive step, suppose the claim is true for somei, i.e,,Ii is a constant, which implies at most⌊|Gi|/Ii⌋

buckets of capacityIi can be merged withinGi. The new bucket from merging therefore has capacity

⌊|Gi |/Ii⌋ Ii = Ii+1, which is a constant. This completes the proof.

In the next lemma, we show that givenIi we can directly find the sequence of time points at which

Gi has buckets to be merged.
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Algorithm 17 : InitializeFindRegions()
Task: Initialize hash table with merging times.

Initialize hash tableT;1

I0← 1;2

for 1≤ i ≤ β −1 do Ii ← ⌊|Gi−1|/Ii−1⌋ Ii−1 ; /* From Lemma 4.3.1 */3

for 1≤ i ≤ β −1 do4

if ⌊|Gi |/Ii⌋ ≥ 2 then Insert(i,bi +2Ii) into hash tableT ; /* Compute the time at5

which Gi firstly has mergable buckets */

Lemma 4.3.2. For each i∈ { j| j = 0 or ⌊|G j |/Ii⌋ < 2}, Gi has no buckets to be merged at any time;

for each i∈ { j| j > 0 and⌊|G j |/Ii⌋ ≥ 2}, Gi has buckets to be merged at time{bi +(k⌊|Gi |/Ii⌋+ j)Ii},

for each j and k,2≤ j ≤ ⌊|Gi |/Ii⌋, k≥ 0.

Proof. The new bucket created inG0 has capacity equal to|G0|, soG0 does not have any buckets to be

merged at any time. Fori > 0, if ⌊|Gi|/Ii⌋< 2, thenGi will not have the chance to have two buckets of

capacityIi to be merged at any time. Now we consider the case where⌊|Gi|/Ii⌋ ≥ 2 andi > 0. Gi has

its first whole bucket at timet = bi + Ii. Note that withinGi at most⌊|Gi|/Ii⌋ buckets that enterGi can

be merged together. Thus, (1) at timet = bi +2Ii,bi +3Ii , . . . ,bi + ⌊|Gi |/Ii⌋ · Ii , buckets can be merged

within Gi; (2) This sequence of merge operations repeats every⌊|Gi |/Ii⌋ · Ii clock ticks, meaningGi has

buckets to be merged at times{bi +(k⌊|Gi|/Ii⌋+ j)Ii}, for eachj andk, 2≤ j ≤ ⌊|Gi |/Ii⌋, k≥ 0.

Lemma4.3.2provides a way for each region to directly compute the sequence of time points at

which it has buckets to be merged. Based on this observation,we present the algorithm that given time

t returns the set of regions, which have buckets to be merged attime t.

Algorithm for Fast Bucket Merging. Our implementation of the algorithm uses a hash tableT to

store the set of buckets that need to be merged at timestampt. In particular,t is hashed to the index

of a table cell which stores the set of(i, t) pairs, such that regionGi has buckets to be merged at

time t. Algorithm 17 shows procedure INITIALIZE FINDREGIONS() which first computesIi using

Lemma4.3.1. It then uses Lemma4.3.2to fill in the earliest time at which regionGi will have buckets

to be merged. At timet, FINDREGIONS(t) (Algorithm 18) retrieves the set of regions that have buckets

to be merged, and deletes those regions from the hash table. Then, for each returned region, we compute

its next merging time using Lemma4.3.2and store the results into the corresponding hash table cells
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Algorithm 18 : FindRegions(t)
Task: Find mergable regions at timet.

M← /0;1

foreach (i, t) ∈ T do /* Region G has buckets to be merged at time t */2

M←M∪{i};3

if (t−bi)/Ii mod⌊|Gi |/Ii⌋= 0 then t ′← t +2Ii;4

elset ′← t + Ii ; /* Find the next time at which Gi has mergable buckets */5

Insert(i, t ′) into hash tableT;6

return M ; /* set of regions with buckets to be merged at time t */7

for the future lookup.

4.3.2.4 Time and Space Complexity

The time complexity depends on the sketch bucket that we chose and the decay functiong given by

the user.

Theorem 4.3.4. The (amortized) time complexity of the algorithm per updatein Algorithm 15 is

O(Q(M/n)+ logQ), where M is the total number of merges happened in processingthe stream, and

1. Q= O
(

1
ε2 log β

δ logn
)

is the size of the sketch bucket in words in Chapter2.

2. Q= O
(

1
ε log

(
εn

logn

))
is the size of the sketch bucket in words in (25).

Proof. The per update cost is dominated by: (1) inserting the new element into the bucket, which takes

time sublinear in the size of the sketch bucket: logQ. (2) merging buckets when necessary, which

can be carried out in time linear in the size of the bucket datastructure (Chapter2 or (25)), so the

amortized time for merge per update isO(Q(M/n)) (3) Updating the hash table, which has to be done

once for every merge that occurs, and takes constant time. Combining these costs leads to the stated

time complexity.

Time dependence on decay functiong. As stated in Theorem4.3.4, the time complexity depends on

the value ofM, which in turn is determined by the choice of decay functiong, since it defines the size

of each region in the WBMH and hence the sequence of bucket merges during the stream processing.

We show the consequence for various broad classes of decay function:
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• In the case of no decay (g(x) ≡ 1), the regionG0 is infinitely large, so the algorithm maintains

only one bucket and therefore no bucket merges will happen, i.e.,M = 0, giving the time cost

O(logQ).

• For exponential decay functionsg(x) = 2−αx, α > 0, since all the regions have the same size

|Gi | =
⌊

1
α log2

(
1+ ε

2

)⌋
, 0≤ i ≤ β , no bucket merges will happen, i.e.,M = 0, giving the time

costO(logQ).

• For all other decay functions, such as polynomial decayg(x) = (x+ 1)−a, a > 0, many bucket

merges can happen. For a synchronous stream, there can be at most n bucket merges, as each

merge conceptually places two adjacent stream elements which were in different buckets in the

same bucket. Thus, whatever the decay function, the total number of merges cannot be larger

than the stream sizen, i.e.,M ≤ n. So the amortized time costO(Q).

The space complexity includes the space cost for the bucketsin the histogram and the hash table.

The space to represent each bucket depends on the choice of the bucket sketch.

Theorem 4.3.5.The space complexity of Algorithm14, 15 and16 is O(β (Z+ logn)) bits, where

1. β =
⌈
log1+ε/2(g(0)/g(n))

⌉

2. Z= O
(

1
ε2 log β

δ lognlogm
)

is the size in bit of the bucket sketch designed in Chapter2.

3. Z= O
(

1
ε logmlog

(
εn

logn

))
is the size of the bucket sketch in bits in (25).

Proof. The number of buckets used is at most 2β . For the randomized sketch designed in Chapter2, in

order to have aδ failure probability bound, by the union bound, we need to setthe failure probability for

each bucket to beδ/(2β ), so we getZ = O
(

1
ε2 log β

δ lognlogm
)

(Lemma2.2.11). For the deterministic

sketch designed in (25), Z = O
(

1
ε logmlog

(
εn

logn

))
(Section 3.1 in (25)). The size of the hash table can

be set toO(β ) cells, because each of theβ regions occupies at most one cell. Each cell usesO(logn)

bits of space to store the region’s index and the region’s next merge time. So all together, the total space

cost isO(β (Z+ logn)).

Space dependence on decay functiong. As shown in Theorem4.3.5, the space complexity depends

on the decay functiong, since it determines the number of regions (implicitly the number of buckets)

in WBMH. We show the consequence for various broad classes ofdecay function:
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• For exponential decay functionsg(x) = 2−αx, α > 0, we haveβ = αnlog1+ε/22 and therefore

the space complexity isO(n(logm) logn) bits. This means that this algorithm needs space linear

in the input size.

• For polynomial decay functionsg(x) = (x+1)−a, a > 0, sinceβ = alog1+ε/2n, the space com-

plexity is sublinear,O
(

a
ε3 log2nlogmlog β

δ

)
using the sketch in Chapter2, and

O( a
ε2 lognlogmlog(εn/ logn)+ log2n) using the sketch of (25);

• In the case of no decay (g(x) ≡ 1), the regionG0 is infinitely large, so the algorithm maintains

only one bucket, giving space costO(Z+ logn).

Intuitively the algorithm can approximateSg
τ with a relative error bound using small space ifg

decays more slowly than the exponential decay. Further, thespace decreases the “slower” thatg decays,

the limiting case being that of no decay. We complement this observation with the result that the DCS

problem under exponential decay requires linear space in order to provide relative error guarantees.

4.3.2.5 Asynchronous Streams

So far our discussion of the algorithm for relative error hasfocused on the case of strictly syn-

chronous streams, where the elements arrive in order of timestamps. In an asynchronous setting, a new

element(v1,w1, t1) may have timestampt1 < t wheret is the current time. But this can easily be handled

by the algorithm described above: the new element is just directly inserted into the earlier bucket which

is responsible for timestampt1. Meanwhile, at every clock tickt, if no new element with timestampt is

received, we can still maintain the WBMH in the way as if we received a newdummystream element

whose timestamp ist, but we do not insert the dummy element into the WBMH. In otherwords, we

create a new sketch bucket for the dummy element when necessary but do not insert it into the sketch

bucket (leaving the new sketch bucket empty), and merge all the sketch buckets determined. Therefore,

WBMH can be maintained exactly in the same way as in the case where a strictly synchronous stream

is processed in Algorithm15. The accuracy and space guarantees do not alter, although the time cost

is affected because for each new element, we need to find the right bucket to insert it.

Let Q,Z,M be the same as defined in Theorem4.3.4and4.3.5. Let L denote the age of the oldest

stream element.
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Corollary 4.3.5.1. The (amortized) time complexity of the algorithm per timestep for an asynchronous

stream is O(Q(M/L)+ (n/L)(logQ+ logβ )). The space complexity of the algorithm for an asyn-

chronous stream is O(β (Z+ logL)) bits, whereβ =
⌈
log1+ε/2(g(0)/g(L))

⌉
.

Proof. Time complexity.Note that the number of sketch buckets only depends on the decay function

and the timestamp range in the stream, and there are no more than 2β = 2
⌈
log1+ε/2(g(0)/g(L))

⌉

sketch buckets. All the sketch buckets can be managed by a balanced binary search tree with the

timestamp ranges of the buckets being the keys, so the time cost in finding the bucket for the insertion

of a new element isO(logβ ). Inserting a new element into a sketch bucket costs timeO(logQ). So the

amortized time for inserting elements into WBMH per timestep is O((n/L)(logQ+ logβ ))). Adding

the amortized time costO(Q(M/L)) in merging buckets per timestep, we get the stated time complexity.

Space complexity.The space cost includes the space usage by the sketch bucketsO(βZ) and the

space usage by the hashtableO(β logL). Add them together, we get the stated space complexity.

We note that in the case where the stream size is relatively much smaller than the timestamp range

in the stream, the actual space cost by our algorithm will be much smaller than the (worst case) space

complexity stated in the above theorem, because in that casemost of the sketch buckets will either be

empty or only have a few elements inserted.

4.4 Lower Bounds

This section shows large space lower bounds for finite decay or (super) exponential decay for DCC

on strictly synchronous streams. Since DCC is a special caseof DCS, and every synchronous stream is

also an asynchronous stream, these lower bounds also apply to DCS on asynchronous streams.

4.4.1 Finite Decay

Finite decay, defined in Section1.4.1, captures the case when after some age limitN, the decayed

weight is zero.

Theorem 4.4.1.For any finite decay function g with age limit N, any streamingalgorithm (determinis-

tic or randomized) that can provide an estimateĈg
τ such that|Ĉg

τ −Cg
τ |< εCg

τ for anyτ given at query
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time for a stream of elements drawn from a universe of size m must requireΩ(N log(m/N)) bits of

space.

Proof. The bound follows from the hardness of finding the maximum element within a sliding window

on a stream of integers. Tracking the maximum within a sliding window of sizeN over a data stream

needsΩ(N log(m/N)) bits of space, wherem is the size of the universe from which the stream elements

are drawn (Section 7.4 of (35)).

We show that if there exists an algorithm to approximateĈg
τ , whereg has age limitN, then there is

an algorithm to find the maximum of the lastN elements inR, using the same space. Letα denote the

value of the maximum element in the lastN elements of the stream. By definition, the decayed weights

of theN most recent elements are positive, while all older elementshave weight zero.

Note thatCg
τ is a non-increasing function ofτ , soCg

τ ≥Cg
α for anyτ < α . Further, soCg

α > 0, and

Cg
τ = 0 for τ > α . If Cg

τ can be approximated with a good relative error, then it is possible to distinguish

between the casesCg
τ > 0 andCg

τ = 0, for each value ofτ . By repeatedly querying the data structure

for Cg
τ for different values ofτ , we find a valueτ∗ such thatCg

τ∗ > 0 andCg
τ∗+1 = 0. Thenτ∗ must be

α , the maximum element of the lastN elements.

Since sliding window decay is a special case of finite decay, this shows that approximatingCg
τ with

g being a sliding window decay function cannot be solved with relative error in sublinear space. This

resolves an open problem identified in (6).

4.4.2 Exponential Decay

Exponential decay functionsg(x) = 2−αx, α > 0 are widely used in non-correlated time decayed

steaming data aggregation. It is easy to maintain simple sums and counts under such decay effi-

ciently (21). However, in this section we will show that it isnot possible to approximateCg
τ with

relative error guarantees using small space ifm (the size of the universe) is large andg is exponential

decay. This remains true for other classes of decay that are “faster” than exponential decay. We first

present two natural approaches to approximateCg
τ under an exponential decay functiong, and analyze

their space cost to show that each stores large amounts of information.
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Algorithm I. Since tracking the sum under exponential decay can be performed efficiently using

a single counter, we can just track the decayed correlated count for each distinctv ∈ [m]: Wg
v =

∑ei∈R|vi=vg(t − ti), thenCg
τ = ∑v≥τ Wg

v . To ensure an good estimate forCg
τ , eachWg

v must be tracked

with sufficiently many bits of precision. One approach is that for each distinctv ∈ [m] we maintain

the timestamps of the last⌈ 1
α log2

1
ε ⌉ elements of the substreamRv = {vi ∈ R|vi = v}. From these

timestamps, one can approximateWg
v with a ε relative error bound, and henceCg

τ can be approx-

imated with anε relative error bound. Each timestamp isO(logn) bits, so the total space cost is

O
(
m(logn)⌈ 1

α log 1
ε ⌉
)

bits.

Algorithm II. The second algorithm tries to reduce the dependence onm by observing that for some

close values ofτ , the value ofCg
τ may be quite similar, so there is potential for “compression”. As

g(x) = 2−αx, α > 0, we can write:

Cg
τ = ∑

vi≥τ
2α(i−t) = 2−αt ∑

vi≥τ
2α i

where t is the query time. We reduce approximatingCg
τ with a relative error bound to a counting

problem over an asynchronous stream with sliding window queries. We create a new streamR′ in this

model by treating each stream element as an item with timestamp set to its valuevi and with weight

2α i. The queryCg
τ at timet can be interpreted as a sliding window query on the derived streamR′ at

timemwith width m− τ +1. The answer to this query is∑vi≥τ 2α i; by the above equation, scaling this

down by 2αt approximatesCg
τ .

The derived streamR′ can be summarized by sketches such as those in Chapter2 or (14). These

answer the sliding window query with relative errorε , implying relative error forCg
τ . But the cost of

these sketches applied here isO(n
ε logm) bits, linear in the stream length: in the reduction, the number

of copies of each stream element increases exponentially, and the space cost of the sketches depends

logarithmically on this quantity.

Hardness of Exponential Decay.Algorithm I is a conceptually simple approach, which storesinfor-

mation for each possible value in the domain. Algorithm II uses summaries that are compact in their

original setting, but when applied to the DCC problem, theirspace must increase to give an accurate

answer for anyτ . The core reason for the high space cost of both algorithms isthe fact that asτ varies
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(a) Setting the Intervals over a Stream

Interval

R:

b =  1 0 0 1 1 …

0 0…0 1 0…00 0…0 1 0…0 2 0…0 0 0…02 0…0 0 0…0 3 0…0 0 0…03 0…0 0 0…0 0 0…0 4 0…00 0…0 4 0…0 … …

(b) Mapping from binary stringb to intervals

Figure 4.2 Creating a stream for the lower bound proof usingp = 1

between 0 andm, the value ofCg
τ can vary over an exponentially large range, and a large data structure

is required to track so many different values. This is made precise by the next theorem, which shows

that the space cost of Algorithm I is close to optimal. We go onto provide a small space sketch with

a weakened guarantee in Section4.4.4, by limiting the range of values ofCg
τ for which an accurate

answer is required.

Theorem 4.4.2. For an exponential decay function g(x) = 2−αx, α > 0 and ε ≤ 1/2, any algorithm

(one-pass or multi-pass, deterministic or randomized) that providesĈg
τ over a stream of length n=

Θ(m), such that|Ĉg
τ −Cg

τ | < εCg
τ for anyτ given at query time must storeΩ(mlog n

m) bits, where m is

the universe size.

Proof. The proof uses a reduction from the INDEX problem in two-party communication complex-

ity (53). In the INDEX problem, Alice holds a binary stringb of lengthN, and the second holds an

index i ∈ [N]. Alice is allowed to send a single message to the second, who must then output the value

of b[i] (the ith bit of stringb). Since no communication is allowed from Bob to Alice, the size of the

message must beΩ(N) bits, even allowing the protocol a constant probability of failure (53).

We show that a small space streaming data structure to approximate DCC under exponential de-

cay would allow a low communication complexity protocol forINDEX. Given a binary stringb of

lengthN = mp, we construct an instance of a stream,R(b). Herem is the size of the domain of the

stream values, andp≥ 1 is an integer parameter set later. The stringb is divided intom partitions

P0,P1, . . . ,Pm−1, wherePi has bitsb[ip],b[ip+1], . . . ,b[(i +1)p−1].

Let ℓ = 2⌈1/α⌉. The streamR(b) hasn = m2pℓ elements. Then positions inR(b) are divided

into m intervals,I0, I1, . . . , Im−1, each of length 2pℓ, as shown in Figure4.2(a)for the casep = 1; the

more recent elements of the stream belong to the lower numbered interval. Each intervalI j is further

divided into 2p segments, each withℓ elements. Each element is a tuple(v, i) wherev is the value and
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i is the timestamp. The stream is synchronous, and the timestamps are consecutively increasing. The

segments inI j are numbered from 0 to 2p− 1, with the more recent segments in the stream getting

smaller numbers. The value of every element ofR(b) is set to 0 except form elements, one in each

interval. The lengthp bit string in partitionP j in b is interpreted as an integer in the range[0,2p−1].

In interval I j , the segment numberedP j is selected and the value of its most recent element is set to

j +1, as shown in Figure4.2(b)for the casep = 1.

Given a sketch that can approximateCg
τ overR(b) usingξ bits, we show a protocol for the INDEX

problem with communication complexityξ bits. Alice computes a sketch ofR(b), which can be used to

approximateCg
τ , and sends it to Bob. Bob, given an indexi, computesb[i] from the sketch, as follows.

Let τ = ⌊i/p⌋. Note that bitb[i] lies in partitionPτ in b. Bob recovers the complete integerPτ , by

using the sketch to distinguish between different assignments to the bit stringPτ .

Consider two different assignments to the stringPτ , representing two integersp1 andp2. Without

losing the generality, letp1 > p2 (p1 and p2 cannot be the same). Let the value ofCg
τ for these two

assignments beC1 andC2. Suppose that the sketch ofR(b) provides an answer forCg
τ which has a

relative error of 1/2 or less. Let̂C1 andĈ2 denotes the estimates returned forC1, C2 respectively. In

Lemma4.4.1, we show that ifp1 > p2, thenC1 < C2 andĈ1 < Ĉ2. Thus, all the estimates forCg
τ over

different assignments forPτ are in a total order. So, by using an estimate ofCg
τ , we can distinguish

between different assignments toPτ , and hence recover all ofPτ , and solve the INDEX problem.

Thus the size of the sketch ofR(b) must be at leastΩ(N) = Ω(mp) bits.

The stream length isn = m2p/α , so the lower bound on the sketch size isN = Ω(mlog(n/m)),

for a constantα . Since the communication lower bound allows randomization, the space lower bound

also holds for randomized stream algorithms. Since we did not assume that Alice processed the stream

in one pass, this space lower bound holds even if the stream isallowed to be processed in multiple

passes.

Let p1 andp2, C1 andC2, andĈ1 andĈ2 be defined as in the proof of Theorem4.4.2.

Lemma 4.4.1. If p1 > p2, then C1 < C2 andĈ1 < Ĉ2.

Proof. Since the sketch provides estimates that are within a relative error of 1/2, we have:



www.manaraa.com

108

C1

2
≤ Ĉ1≤

3C1

2
(4.7)

C2

2
≤ Ĉ2≤

3C2

2
(4.8)

Let c denote the current time.

Cg
τ = ∑

{(v,i)∈R(b)|v≥τ}
g(c− i)

For integerj,0≤ j ≤m−1, let the contribution of intervalj toCg
τ be defined as:

C( j) = ∑
{(v,i)∈I j |v≥τ}

g(c− i)

Also, since the two bit strings differ in the values assignedto Pτ , the corresponding streams differ

in interval Iτ . Let C1(τ) andC2(τ) respectively denote the value ofC(τ) for the two inputs. We note

thatC1(τ) andC2(τ) differ by a factor of at least 4, since they both contain an element with the same

value inIτ , but in different positions, so that the decayed weights differ by a factor of at least 4. Since

p1 > p2, according to the stream construction in the proof of Theorem 4.4.2, we have

C1(τ)≤
C2(τ)

4
(4.9)

In Lemma4.4.2, we show thatCg
τ is dominated by the termC(τ). More precisely:

C(τ) < Cg
τ <

4
3
C(τ) (4.10)

Combining Inequalities4.9and4.10, we get

C1 <
4
3
C1(τ)≤

4
3

1
4
C2(τ) =

1
3

C2(τ) <
1
3
C2 < C2
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Combining Inequalities4.7, 4.8, and4.9, we get:

Ĉ1≤
3
2
C1 <

3
2

4
3
C1(τ) = 2C1(τ)≤

1
2
C2(τ) <

1
2
C2≤ Ĉ2

Lemma 4.4.2.

C(τ) < Cg
τ <

4
3
C(τ)

Proof. Note thatCg
τ = ∑m−1

j=0 C( j). For every 0≤ j < τ , we note thatI j does not have any tuples(v, i)

with v≥ τ . Thus, the contribution of such tuples toCg
τ is 0, and so:

Cg
τ =

m−1

∑
j=τ

C( j)

Also, for j > τ , the contribution ofC( j) to Cg
τ is non-zero, since forj > 0, I j has tuples(v, i) with

v≥ τ . Thus,C(τ) < Cg
τ , which proves one part of the Lemma.

Next, we note that for any integerζ , no matter what the contents ofIτ+ζ is,

C(τ + ζ )≤
C(τ)

4ζ

The reason is as follows. Note thatC(τ) is non-zero, since there is at one element inIτ with value

greater than or equal toτ . Further, there is exactly one non-zero element in each interval Iτ+ζ . Since

the difference in timestamps between the non-zero element in Iτ andIτ+ζ is at leastζ · ℓ, we have:

C(τ + ζ )≤C(τ) ·g(ℓζ ) = C(τ) ·2−αℓζ ≤
C(τ)

4ζ

where the last step follows from the definition ofℓ.

Cg
τ =

m−1

∑
j=τ

C( j) =
m−1−τ

∑
ζ=0

C(τ + ζ )≤
m−1−τ

∑
ζ=0

C(τ)

4ζ <
∞

∑
ζ=0

C(τ)

4ζ =
4
3

C(τ)
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4.4.3 Super-exponential Decay

The result in Theorem4.4.2also holds for the super-exponential decay functions, defined in Sec-

tion 1.4.1.

Theorem 4.4.3.Consider a stream of length n= Θ(m), and a super-exponential decay function g. Any

algorithm (one-pass or multi-pass, deterministic or randomized) that provideŝCg
τ , an estimate of Cgτ ,

such that|Ĉg
τ −Cg

τ | < εCg
τ for any τ given at query time must storeΩ

(
mlog n

m

)
bits, where m is the

universe size.

Proof. The proof is nearly identical to the one for Theorem4.4.2, having the same structure and using

the same reduction to the INDEX problem.

Again, Alice has a bit stringb of lengthmp, which is divided intompartitions:P0,P1, . . . ,Pm−1,

wherePi has bitsb[ip],b[ip+1], . . . ,b[(i +1)p−1]. Based on the bit stringb, Alice creates a stream

R(b) of length n = 2pmℓ + c, whereℓ = ⌈logσ 4⌉ and c is the constant in the definition of super-

exponential decay in Section1.4.1, as follows. Each element is a(v, t) pair and elements are received

in the order of their timestamps 0,1, . . . ,2pmℓ + c− 1, i.e., the streamR(b) is strictly synchronous.

Thec elements with largest timestamps inR(b) are assigned with value 0. LetR′(b) denote the other

elements inR(b). For streamR′(b), Alice assigns the values in the same way as she did forR(b) in

the proof for Theorem4.4.2: (1) R′(b) is divided intom intervals,I0, I1, . . . , Im−1, each of length 2pℓ;

(2) Each intervalI j is further divided into 2p segments, each withℓ elements. The segments inI j are

numbered from 0 to 2p−1, with the more recent segments in the stream getting smaller numbers; (3)

The value of every element ofR′(b) is set to 0 except form elements, one in each interval. The length

p bit string in partitionP j in b is interpreted as an integer in the range[0,2p−1]. In interval I j , the

segment numberedP j is selected and the value of its most recent element is set toj +1.

Alice process the streamR(b) and sends the sketch to Bob. Given the indexi, Bob setsτ = ⌈i/p⌉

and queries the sketch forCg
τ . Since the ages of the elements inR′(b) are at leastc, by the definition of

super-exponential decay, any two neighboring elements inR′(b) have their weights differ by a factor of

at leastσ . Thus, the two most recent elements in any two neighboring segments differ in their weights

by a factor of at least 4, since we setℓ = ⌈logσ 4⌉. Further, since thec most recent elements inR(b) will

not have any contribution inCg
τ , for anyτ > 0, because they are all assigned with value 0, we now have
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the same argument between the bit stringb and streamR′(b) as we did for the bit stringb and stream

R(b) in the proof for Theorem4.4.2: by usingĈg
τ , the estimate ofCg

τ returned by the sketch, Bob can

reveal the value ofb[i]. So the space cost for processing streamR(b) of lengthn = 2pmℓ+c is at least

mpbits. By replacep, we get the space lower bound ofΩ(mlog(n/m)) bits, by constants ofc andσ

Since the communication lower bound allows randomization,the space lower bound also holds for

randomized stream algorithms. Since we did not assume that Alice processed the stream in one pass,

this space lower bound holds even if the stream is allowed to be processed in multiple passes.

4.4.4 Finite (Super) Exponential Decay

As noted above, the lower bound proof relies on distinguishing a sequence of exponentially de-

creasing possible values of the DCC. In practical situations, it often suffices to return an answer of zero

when the true answer is less than some specified boundµ . This creates a “finite” version of exponential

decay.

Definition 4.4.1. A decay function g is a finite exponential decay function withthresholdµ , 0< µ < 1,

if: (1) g(x) = 2−αx, α > 0, if x≤ 1
α log2

1
µ (which implies g(x) ≥ µ); (2) g(x) = 0, otherwise.

Since finite exponential decay is a finite decay, the space lower bound in Theorem4.4.1implies

space ofΩ((1/α) log(1/µ)) bits is necessary to approximateCg
τ . A simple algorithm forCg

τ simply

stores all the stream elements with non-zero decayed weights. The space isO((1/α) · logm· log(1/µ))

bits, which is (nearly) optimal (treating logm as a small constant). This approach extends to the finite

versions of super-exponential decay.

4.4.5 Sub-exponential decay

For any decay functiong(x), where limx→∞ g(x) = 0, we can always find 2pm positions (times-

tamps) in the stream: 0≤ x1 < x2 < .. . < x2pm, such that for everyi, 1 < i ≤ 2pm, we haveg(t −

xi−1)/g(t − xi) ≤ 1/4. Thus, it is natural to analyze what happens when we apply the construction

from the lower bound in Theorem4.4.2to streams under such functions. Certainly, the same style of

argument constructs a stream that forces a large data structure. If we fix somem and setp = 1, the
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Figure 4.3 Throughput and accuracy with sliding window decay, additive error.

stream has to be truly enormous to imply a large space lower bound: e.g., for the polynomial decay

functiong(x) = (x+1)−a, a> 0, we needn= Θ(2m/a) to forceΩ(m) space. This is in agreement with

the upper bounds in Section4.3.2which gave algorithms that depend logarithmically onn: for such

truly huge values ofn, this leads to a requirement of log2m/a = Ω(m), so there is no contradiction.

4.5 Experiments

We present results from an experimental evaluation of the algorithms on two data sets. The

first was web traffic logs from the 1998 World Cup on June 19th (the ‘worldcup’ data set) from

http://ita.ee.lbl.gov/. Each stream element was a tuple(v,w, t), wherev was the client id ,

w the packet size (modulo 100, simply to have initial weights bounded within a range), andt the times-

tamp, of the original web traffic logs, respectively. The dataset had 33695769 elements. The second

http://ita.ee.lbl.gov/
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Figure 4.4 Performance of Relative Error Algorithm, with Polynomial Decay.

was a synthetically generated data set (the ‘synthetic’ data set). The size of the synthetic data is the

same as the worldcup data set. Here, the timestamp of an element is a random number chosen uniformly

from the range[1,maxt ] where maxt = 898293600 is the maximum timestamp in the world cup data

set. The valuev is chosen uniformly from the range[1,maxv], where maxv = 1823218 is the maximum

value in the worldcup data set. The weight is chosen similarly, i.e. uniformly from the range[1,maxw]

where maxw = 99 is the maximum weight in the world cup data.

We implemented our algorithms using C++/STL and all experiments were performed on a SUSE

Linux Laptop with 1GB memory. Both input streams were asynchronous, and elements do not arrive

in timestamp order.

Additive Error. We implemented the algorithm for additive error (Section4.3.1) using the sketch in

(30) as the basis. Note that the sketch in (30) provides the additional property of duplicate insensitivity,

i.e., a re-insertion of the data into the sketch does not change the state of the sketch. Since our stream

model does not have duplicates, our implementation of the sketch in (30) does not need to support

duplicates detection and therefore improves the time efficiency in the stream processing.

Since a query forSg
τ whereg is not a sliding window decay can be reduced to queries for sliding

window decay based DCS (21), we conducted experiments with the correlated sumSg
τ whereg is the

sliding decay function. The window size is 4.5 ·107 for the synthetic data and 3600 for the worldcup

data. We tried a range of values of the thresholdτ , from the 5 percent quantile (5th percentile) of

the values of stream elements to the 95 percent quantile. We analyzed the accuracy of the estimates
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returned by the sketch, for a given space budget.

Figures4.3(a)and4.3(b)show the observed additive error as a function of the space used by the

algorithm for different values ofτ . The space cost is measured in the number of nodes, where each

node is the space required to store a single stream element(v,w, t), which takes a constant number of

bytes. This cost can be compared to the naive method which stores all input elements (nearly 34 million

nodes). The observed error is usually significantly smallerthan the guarantee provided by theory. The

theoretical guarantee holds irrespective of the value ofτ or the window size. Note that the additive

error decreased as the square root of the space cost, as expected. Figure4.3(c)shows the throughput,

which is defined as the number of stream elements processed per second, as a function of the space

used. From the results, the trend is for the throughput to decrease slowly as the space increases. Across

a wide range of values for the space, the throughput is between 250K and 350K updates per second.

Relative Error. We implemented WBMH and the sketch designed in Chapter2 as the bucket sketch

embedded in WBMH. We performed similar experiments to test our algorithms for relative error,

based on the polynomial decay functiong(x) = 1/(x+1)1.5, a non-exponential converging decay. The

thresholds are the same as in the additive error algorithm. The results are shown in Figure4.4. In

general, the space cost for a given error for polynomial decay was much smaller than the algorithm

for sliding windows (Figure4.4(a)). This greater space efficiency comes at some cost: we have to

fix the decay functiona priori—the additive error result allows the decay function to be specified at

query time. The throughput for the relative error algorithmis also appreciably lower than the additive

error algorithm (Figure4.4(b)), by over an order of magnitude. This is partly due to the greater time

complexity of the relative error algorithm caused by the periodic bucket merging operations which

access every node in the merged buckets, and partly because our implementation is not fully tuned.

4.6 Concluding Remarks

Our results shed light on the problem of computing correlated sums over time-decayed streams. The

upper bounds are quite strong, since they apply to asynchronous streams with arbitrary timestamps.

It is also possible to extend these results to a distributed streaming model, since the summarizing

data structures used can naturally be computed over distributed data, and merged together to give a
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summary of the union of the streams. The lower bounds are similarly strong, since they apply to the

most restricted model, for computing DCC where there is exactly one arrival per time unit.

The correlated sum is at the heart of many correlated aggregates, but there are other natural corre-

lated computations to consider which do not follow immediately from DCS. Some we expect to be hard

in general: correlated maximum maxvi>τ wig(t− ti) has a linear space lower bound under finite decay

functions, since this lower bound follows from the uncorrelated case. Other analysis tasks seem feasi-

ble but challenging: for example, to output a good set of cluster centers for those points withvi > τ ,

weighted bywig(t− ti). It will be of interest to understand exactly which such correlated aggregations

are possible in a streaming setting.
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CHAPTER 5. Forward Decay: A Practical Decay Model for StreamSystems

As we have shown in the last few chapters, temporal data analysis in data streaming systems often

uses time decay to reduce the importance of older tuples, without eliminating their influence, on the

results of the analysis. While exponential time decay is commonly used in practice (except for the

correlated data aggregation), other decay functions (e.g.polynomial decay) are not, even though they

have been identified as useful. We argue that this is because the usual time decay, defined in Defini-

tion 1.4.1, are “backwards”: the decayed weight of a tuple is based on its age, measured backward from

the current time. Since this age is constantly changing, such decay is too complex and unwieldy for

scalable implementation.

In this chapter, we propose a new class offorward decay functions based on measuring forward

from a fixed point in time. We show that this model captures a variety of backward decay functions,

such as exponential decay and landmark windows. We provide efficient algorithms to compute a vari-

ety of aggregates and draw samples under forward decay, and show that these are easy to implement

scalably. Further, we provide empirical evidence that these can be executed in a production data stream

management system with little or no overhead compared to theundecayed computations. Our im-

plementation required no extensions to the query language or the DSMS, demonstrating that forward

decay represents a practical model of time decay for systemsthat deal with time-based data.

5.1 Introduction

Building robust systems for managing data streams is a challenging task, since typical streams

(in application areas such as networks and financial data) arrive at very high rates and require im-

mediate processing. Queries are typically continuous, meaning that the output of a query is itself a

stream, which may be the input for subsequent querying. Systems must also cope with data quality
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issues: for example, there is no guarantee that tuples will be presented in timestamp order, and so

techniques such as punctuations (76) and heartbeats (50) are used to avoid query blocking. A number

of general purpose prototype streaming systems have been created, such as Stream (73), Aurora (69)

and TelegraphCQ (17); the current state-of-the-art deployed streaming systems (including GS (33) and

Streambase (74)) are specialized for particular application domains (networking and financial).

Motivated by such applications, there has been a great deal of work on algorithms for efficiently

answering streaming queries under time decay. Much of this focus has been on giving approximate

answers to aggregate queries. However, within current production systems, the support for time decay

is actually quite limited. We give our examples and evaluation using GS, a mature network stream

processing system developed at AT&T (33). This system allows a wide variety of queries to be posed

in an SQL-like language, and has many hooks in it for extensibility: support for user defined operators

(UDOPs) and user defined aggregate functions (UDAFs), whichallow arbitrary (C/C++) code to be

executed on selected tuples. This infrastructure has enabled approximate algorithms to be evaluated in

the non-decayed case (23). Yet support for time decay has so far been limited to a simple time-bucket

approach: the query specifies a duration, such as the time in the granularity of minutes, and an answer

is provided for each minute-wise time-bucket.

On closer inspection, it is clear that many of the approachesproposed so far for handling time decay

do not scale well within streaming systems. Answering queries with a sliding window exactly requires

buffering large quantities of tuples. While the approximate solutions, such as exponential histograms

and its variants (35; 42; 25), improve the resources needed, they can still be of the order of megabytes

of space per group and milliseconds of time per tuple to trackcomplex holistic aggregates. But the

motivating applications can typically only afford a few kilobytes of space per group in a query (since

there can be tens of thousands of active groups) and microseconds per update, at best. So while these

solutions (surveyed in more detail in Section5.7) have good asymptotic performance, they are not yet

suitable for deployment in high throughput systems.

The complexity of existing algorithms for time decay arisesbecause work so far has mostly con-

centrated on the case that we dubbackward decay(Definition 1.4.1). That is, the weight of an item

is computed based on its age, measuringback from the current time. But implementing such decay

is problematic, since an item’s age changes as time elapses,making it necessary to maintain a lot of
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additional information to recompute the relative weights for the query.

Our Contributions. We propose a new class of decay functions which instead measures the age of an

item forwards from an appropriate landmark point. Thus we call this classforward decay. It has the

advantage that it can be much easier to compute with, since the “forward age” of an item (relative to

the landmark) is fixed once it has been observed; its relativeimportance diminishes as newer items are

seen, since their weights grow to dominate the older weights.

We show several important properties of forward decay:

• Exponential decay is identical under both forward and backward decay models. The forward

view of exponential decay helps to explain why this decay model is easier to compute; it also

allows us to propose simple, effective algorithms for sampling under exponential decay, which

strictly improve on the state of the art.

• For a large class of functions, specifically the monomials, forward decay guarantees a useful

relative decay property, which is that the effective weight of an item is a function ofits relative

age: how far it falls along the interval between the landmark time and the current time. This is a

natural and intuitive property that was not attainable under backward decay models.

• Forward decay captures and generalizes the existing notions of landmark windows.

Our analysis shows how forward decay can be computed using existing techniques for aggregates

on weighted tuples in data streams. As a consequence, efficient and scalable algorithms follow imme-

diately, with the same space and time bounds as their undecayed counterparts. Further, we implement

these within the GS system, and compare to a selection of general techniques for backward decay.

Simple aggregation such as count and sum is immediate, whileholistic aggregates such as quantiles

and heavy hitters require only appropriate UDAFs for the weighted versions of the aggregates. No

extensions to the query language or changes to the system areneeded. We observe that the forward

decay solutions are practical for use in high speed systems,in contrast to the backward decay meth-

ods. In our experiments on live network streams, we observedthat the forward decay approach could

answer queries on multi-gigabit data without loss, while methods based on backward decay dropped

many packets, and reached 100% CPU load.
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Outline. We proceed as follows: In Section5.2we describe decay models and existing backward decay

definitions, then in Section5.3we introduce our model of forward decay and study its properties. We

show how to compute aggregates under forward decay in Section 5.4, and how to draw samples in

Section5.5. Implementation issues are discussed in Section5.6, related work in Section5.7, and our

experimental study is described in Section5.8.

5.2 Decay functions

We consider a stream of items(vi , ti), projected on the dimensions of thevalueandtimestampfrom

the streamR, defined in Chapter1.3. We first give a more general definition of decay function which

can abstract the backward decay model defined in Definition1.4.1and the forward decay model.

Definition 5.2.1. A decay functiontakes some information about the ith item, and returns a weight for

this item. It can depend on a variety of properties of the itemsuch as ti , vi as well as the current time t,

but for brevity we will write it simply asW (i, t), or just W (i) when t is implicit. We define a function

W (i, t) to be adecay functionif it satisfies the following properties:

1. W (i, t) = 1 when ti = t and0≤W (i, t)≤ 1 for all t ≥ ti .

2. W is monotone non-increasing as time increases: t′ ≥ t⇒W (i, t ′)≤W (i, t).

5.2.1 Backward Decay Functions

Prior work on time decay, including those presented in previous chapters, has focused on decay

functions of a particular form: where the weight of an item can be written as a function of its initial

weight and itsage, x, where the age at timet > ti is simplyx = t− ti. We refer to decay of this form

asbackward decay, since we are always measuringbackfrom the current time to the item’s timestamp.

More formally, we state:

Definition 5.2.2. A backward decay function is defined by a positive monotone non-increasing function

g() so that the weight of the ith item at time t is given by

W (i, t) =
g(t− ti)
g(t− t)

=
g(t− ti)

g(0)
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The denominator in the expression normalizes the weight, sothat it obeys condition 1 of Defini-

tion 5.2.1. Some examples of the most popular decay functions are generated by pickingg to be of a

certain form, such asno decay, sliding window decay, exponential decayandpolynomial decay, defined

in Chapter1.4, by adding an appropriate denominator. It is easy to verify that all the above functions

satisfy the requirements for decay functions (Definition5.2.1).

There has been significant study of how to compute a variety ofsimple and complex aggregates

under decay functions (21; 57; 25) (especially the special case of sliding window (7; 35; 54)). Typically

their cost is high: the space and time required to apply decaycan be many times the cost of computing

the aggregate without decay. We survey these results in moredetail in Section5.7.

5.3 Forward Decay

The main challenge in implementing time decay computationsunder a backward decay function is

that we must compute a function of theageof each item, relative to the current time, and this is con-

stantly changing. To compute a simple decayed aggregate exactly, such as decayed sum, can require

revisiting every input item to compute the contribution of that item (an exception is exponentially de-

cayed sum and counts, which can be tracked in constant space due to properties of the decay function).

Instead we proposeForward Decayas a different model of decay satisfying Definition5.2.1. The

forward decay is computed on the amount of time between the arrival of an item and a fixed point

L, known as the landmark. By convention, this landmark is sometime earlier than all other items;

we discuss how this landmark can be chosen below. Thus we are looking forward in time from the

landmark to see the item, instead of lookingbackwardfrom the current time.

Because we wish to weight more recent items more heavily thanolder ones, forward decay func-

tions are based on monotonenon-decreasingfunctionsy. In order to normalize values given that the

function value increases with time, we typically need to include a normalizing factor in terms ofy(t),

the function of the current time. More formally,

Definition 5.3.1. Given a positive monotone non-decreasing function y, and a landmark time L, the
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decayed weightof an item with arrival time ti > L measured at time t≥ ti is given by

W (i, t) =
y(ti −L)

y(t−L)

This definition ensures that whent = ti the weight is 1 (condition 1 of Definition5.2.1). As t

increases, this weight never increases (due to the monotonicity of y) and remains in the range[0,1].

Observe that scalingy by a constant has no effect on the value of the decayed weight.

Example 5.3.1.Consider the stream of(ti ,vi) pairs

S = {(105,4),(107,8),(103,3),(108,6), (104,4)}

Let the landmark time L= 100, and set y(n) = n2. Evaluated at t= 110, the decayed weights are

respectively

{0.25,0.49,0.09,0.64,0.16}.

The shape of this decay function is plotted in Figure5.1.

As with backward decay, the most natural choices of functions y fall into similar classes:

• No decay:y(n) = 1 for all n.

• Polynomial decay:y(n) = nβ for some parameterβ > 0.

• Exponential decay:y(n) = exp(αn) for parameterα >0.

• Landmark Window:y(n) = 1 for n > 0, and 0 otherwise.

We discuss the properties of each of these classes of forwarddecay in turn.

5.3.1 Exponential Decay

We observe that forward exponential decay coincides exactly with backward exponential decay.

Formally, consider itemi which arrives at timeti. Under backward decay and the functiong(a) =
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exp(−α(a)), its decayed weight isW i, t) = exp(−α(t− ti)). Under forward decay, its decayed weight

under the functiony(n) = exp(α(n)) is

y(ti −L)

y(t−L)
=

exp(α(ti −L))

exp(α(t−L))
= exp(αti −αL−αt + αL) = exp(−α(t− ti)) = W i, t)

i.e. the two definitions precisely coincide. This is not the case for other classes of decay such as

backward polynomial decay.

This observation motivates our study of forward decay, since it shows forward decay contains an

important existing class of functions that have been widelystudied and adopted. But more than this,

viewing exponential decay from the forward decay perspective allows us to propose effective new

algorithms for problems such as sampling (Section5.5).

5.3.2 Polynomial Decay

In general, one can specify arbitrary polynomial decay functions of the formy(n) = ∑ j γ jn j for

some set ofγ js. But the most natural polynomials to use are monomials,y(n) = nβ for some exponent

β . Under such decay functions, the decayed weights obey an importantrelative decayproperty.

Definition 5.3.2. A system for determining decayed weights is said to have therelative decayproperty

if, for any time t after a landmark time L, the weight for itemswith time stampγt +(1−γ)L is the same.

In other words, if the weight assigned to an item depends onlyon where it falls as a fraction in the

window defined byL andt, then it is relative decay. So for instance, the item arriving half way between

L andt is assigned the same weight, ast increases. This should be an intuitive property: it asks that
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the weight assigned to an item is a function of itsrelative age, that is, its age as a fraction of the total

time period observed. However, backward decay is only concerned withabsolute age, and so gives no

guarantee of relative decay.

Lemma 5.3.1. Forward decay based on a monomial function y(n) = nβ satisfies the relative decay

property.

Proof. Let y(n) = nβ . The weight for an item with arrival timeti = γt +(1− γ)L evaluated at timet is

given by

W i, t) =
y(ti −L)

y(t−L)
=

y(γ(t−L))

y(t−L)
=

(γ(t−L))β

(t−L)β = γβ

This is illustrated in Figure5.1 with y(n) = n2: at time t, in Figure5.1(a), item ti chosen to fall

half-way betweenL andt has weight 0.25. This is true for any timet ′, as shown in Figure5.1(b), where

t ′i (also chosen to fall midway betweenL andt ′) has the same weight as before.

Landmark Choice. This observation is helpful in determining a meaningful landmarkL to choose for

forward decay: because of the relative decay property, it makes sense to set the landmark time to the

start time (or just before) of the query in question. Then items with the same relative time within the

span of timestamps associated with the query have the same decayed weight. From now on, we assume

that the default forL for a given query is (a lower bound on) the smallest timestampin the stream. For

example, when timestamps are allocated as the system time atwhich the tuple is observed, we setL to

be the time when the query was issued.

5.3.3 Landmark windows

Lastly, we observe that the natural equivalent of (backward) sliding window is theLandmark win-

dow, given by the forward decay function that assigns weight 1 toall items with timestamp greater than

landmarkL (43). The window is said to “close” when the query terminates—perhaps based on seeing

a certain number of tuples, or after a certain time has elapsed. This model has been implicitly adopted

by many systems, since it is trivial to implement (just do regular aggregation until the window closes).

Here, we give a foundation for this model by viewing it as a (simple) instance of forward decay.
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5.4 Aggregate Computation under Forward Decayed Models

A decay function in either the forward or backward setting assigns a weight to each item in the

input (and the value of this weight can vary over time). Aggregate computations over such data must

now use these weights to scale the contribution of each item.In most cases, this leads to a natural

weighted generalization of the aggregate. We next work through choices of aggregates, and show their

weighted generalization. We then discuss how to implement exact or approximate computation of these

aggregates overn tuples assuming forward decay based on a functiony and a landmark timeL.

5.4.1 Count, Sum and Average

The three basic aggregates of Count, Sum and Average are straightforward to generalize under

forward decay:

Definition 5.4.1 (Count, Sum and Average). The decayed count, C, is the sum of decayed weights of

stream items

C =
n

∑
i=1

y(ti −L)

y(t−L)

The decayed sum, S, takes an additional value vi for each item i, and sums the weighted values:

S=
n

∑
i=1

vi ·y(ti−L)

y(t−L)

The decayed average, A, is the ratio of decayed sum to decayedcount, so

A = S/C =

(

∑
i

y(ti −L)vi

)
/

(

∑
i

y(ti −L)

)

Example 5.4.1.Take the same example stream given in example5.3.1. Then we have

C =0.25+0.49+0.09+0.64+0.16= 1.63

S=0.25·4+0.49·8+0.09·3+0.64·6+0.16·4 = 9.67

A =S/C = 5.93
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Observe that we can writeS= 1
y(t−L)(∑i y(ti−L)vi). This can be computed by maintaining the value

of ∑i y(ti−L)vi, and scaling by the value ofy(t−L) only when needed for output.C can be maintained

in the same fashion, andA is given by the ratio of these two values. Note that the value of the average

under this definition does not vary as the current timet increases: this is because the average gives an

average of the input values, weighted towards the more recent ones. But, for instance, if all items have

the same valuev, then their average should bev no matter when the query is executed, which is obeyed

by our definition.

Other simple numeric quantities can be computed similarly.For example, the decayed varianceV

(interpreting weights as probabilities) can be written in terms of the decayed sum of squared values,V =

∑i y(ti−L)v2
i /C−A2. More generally, the decayed version of any summation of an algebraic expression

of tuple values (i.e. one based on standard arithmetic operations such as addition, multiplication and

exponentiation) is found by computing the value of the expression on tupleti, multiplying byy(ti−L).

The final result is found by scaling the sum byy(t−L) at query timet. Thus:

Theorem 5.4.1.Any summation of an arithmetic operation on tuples that can be computed in constant

space without decay can also be computed in constant space under any forward decay function.

This has immediate implications for any high-performance streaming system: simple algebraic

quantities can be computed under any forward decay functionusing existing arithmetic support. This

can be specified directly in the query by spelling out the function to create the weights, or by adding

some simple syntactic sugar to achieve the same effect. For example, within the GS query language

(GSQL), we can express a decayed count query under quadraticdecay as:

select tb, destIP, destPort,

sum(len*(time % 60)*(time % 60))/3600 from TCP

group by time/60 as tb, destIP, destPort

Here, the query finds the (decayed) sum of lengths of packets per unique destination (port, ad-

dress) pair, within a window constrained to 60 seconds (hence the scaling by 602 = 3600). Since it is

expressed entirely in the high-level query language, the optimizer can decide how to execute it, find

shared subexpressions etc.

These results are in contrast to backward decay functions: prior work has shown approximation
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algorithms for sum and count with 1+ ε relative error for any backward decay function, but requiring

a blow up in space by anO(1
ε logn) factor.

5.4.2 Min and Max

For Min (respectively, Max), we want to find the tuple which has the smallest (largest) associated

decayedvalue. Under backward decay functions, this is a challenging task, since the changing value of

the decay function over time causes the value of the Min (Max)to vary over time. In contrast, applying

the definition to forward decay generates the following definition:

Definition 5.4.2(Min and Max). The decayed minimum value MIN is defined as

MIN = min

(
vi ·y(ti −L)

y(t−L)

)
=

1
y(t−L)

min
i

(vi ·y(ti−L))

and the decayed maximum value MAX is defined as

MAX = max

(
vi ·y(ti−L)

y(t−L)

)
=

1
y(t−L)

max
i

(vi ·y(ti −L))

Observe that in both cases it suffices to compute the smallest(greatest) value ofy(ti − L)vi seen

so far. ForMAX, when a new(ti ,vi) pair is observed, compute the corresponding value ofy(ti −L)vi,

and retain the item if it exceeds the largest value seen so far. As for algebraic aggregates, this is easily

computed within a streaming system as a simple extension of the undecayed aggregate. In contrast, this

problem is provably hard to solve in small space under backward decay, since in the sliding window

case we can force the algorithm to “remember” the entire contents of the window.

5.4.3 Heavy Hitters and Quantiles

For holistic aggregates such as Heavy Hitters and Quantiles, it is more complicated to find the

answer to queries. However, we will show approximate solutions to the problem with forward decay

which have the same asymptotic costs as their undecayed equivalents. Meanwhile, for backward decay,

methods take at least a logarithmic factor more space (Section 5.7).

Approximate Heavy Hitters. First, we formally define the heavy hitters problem:
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Definition 5.4.3 (Heavy hitters under forward decay). For each item in the input, v, its decayed count

is given by dv = ∑vi=vy(ti −L)/y(t−L). Given a threshold valueφ , theφ heavy-hitters are all items v

satisfying dv ≥ φC.

Example 5.4.2.Consider the example stream given in Example5.3.1. We have C= 1.63, and

d3 = 0.09,d4 = 0.16+0.25= 0.41,d6 = 0.64,d8 = 0.49

Settingφ = 0.2, theφ heavy hitters are items 4, 6, and 8, since their decayed counts exceed1.63∗0.2=

0.326.

Observe, as in heavy hitters without decay, that∑n
i=1di = C, whereC is the (decayed) count given

by Definition5.4.1. The (decayed) heavy hitters are those items whose (decayed) count is at least aφ

fraction of the total (decayed) count. Efficiently computing the heavy hitters over a stream of arrivals

is a challenging problem that has attracted much study even in the unweighted, undecayed case. The

difficulty comes from trying to keep track of sufficient information while using much fewer resources

than explicitly tracking information about each distinct item. Here, efficient approximate solutions are

known. Given a parameterε , these approximate solutions may give an error in the estimated (decayed)

count of items of at mostε times the sum of all (decayed) counts.

Theorem 5.4.2. Given an error boundε , we find all items with dv ≥ φC, and report no items with

dv < (φ − ε)C under the forward decay model using space O(1/ε) counters, and processing each

update in time O(log1/ε).

Proof. Observe that we can rewrite the requirement as

dvy(t−L)≥ φCy(t−L)

or equivalently ∑
vi=v

y(ti −L)≥ φ ∑
i

y(ti −L).

In other words, we can treat this as an instance of a weighted heavy hitters problem, where the weight

of each item is set on arrival asy(ti −L). Importantly, these weights do not change over time.
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We can use the SpaceSaving algorithm proposed by Metwallyet al. (59). As analyzed in (24), this

algorithm naturally extends to weighted updates. We omit full details of the proof for brevity; the proof

in (24) is in the context of exponentially decayed updates, but holds for arbitrarily weighted updates.

The running time and resources needed are the same as the original SpaceSaving algorithm, which can

be implemented in the given bounds.

Approximate Quantiles. The quantiles of a distribution generalize the median, so that theφ quantile

is that item which dominates aφ fraction of the other items. As with heavy hitters, a naturalweighted

generalization can be used over time-decayed weights: we now search for an item that dominates aφ

fraction of the decayed weights. Formally,

Definition 5.4.4 (Quantiles under forward decay). For each item v, its decayed rank is computed as

rv = ∑vi≤vy(ti − L)/y(t − L). Given a query valueφ , theφ quantile is the smallest item v satisfying

rv≥ φC.

Again, exact computation of quantiles can be costly over large data sets, since it requires keeping

information about the whole input. Instead, approximate quantiles tolerate additive errorε in the rank

(relative to the maximum rank). We will assume that the itemsare drawn from an integer domain of

sizeU , i.e. eachvi ∈ [1,U ]. Then:

Theorem 5.4.3.Given an error boundε , we find decayedφ -quantiles under forward decay using space

O(1
ε logU) counters, and processing each update in time O(log logU).

Proof. Similarly to heavy hitters, we can factor out they(t−L) term, so that we reduce the problem to

find the smallest itemi such that∑vi≤vy(ti −L) ≥ φ ∑i y(ti −L). This is a weighted quantiles problem

defined over the (static) weightsy(ti − L). We can now make use of solutions to weighted quantiles

problems. The q-digest data structure (71; 24) naturally handles weighted updates and answers the

approximate quantiles problem with the bounds given in the statement of the theorem.

This approach applies to other holistic aggregate computations over data streams (e.g. clustering

and other geometric properties (46; 48)): factor out they(t−L) term and track the input using weights

y(ti −L). We suppress further examples that fit this pattern for brevity.
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5.4.4 Count Distinct

Aggregates withdistinct keywords, such as Count Distinct, are a little more complicated to

handle. It is not immediately obvious how to extend the countdistinct aggregate to the weighted

scenario. We proceed by analogy with the undecayed case: there, we can view the process as computing

a single weight for each distinct item and summing these weights to get the overall aggregate. In the

undecayed case, the weight for each distinct item present inthe input is always 1. So for the weighted

(time decayed) case, the natural generalization is to compute some function of the weights of each

distinct item and sum these. For time decay, the weight of an item begins at 1 and decays towards 0, so

we choose to define the representative weight of a set of itemsas the maximum of their current weights.

This generalizes the unweighted case, which can be thought of taking the max of the set of the (all 1)

values attached to each distinct item. More formally,

Definition 5.4.5 (Count Distinct under forward decay). The distinct count D of a set of items under

forward decay is

D = ∑
v

max
vi=v

y(ti −L)

y(t−L)

This definition seems to be justified, since it can be approximated using techniques based on careful

combinations of unweighted count distinct summaries.

Theorem 5.4.4.Given a desired error boundε , we can approximate D under the forward decay model

within relative error(1± ε) using spaceÕ(1/ε2).

Proof. We write distinct count under forward decay as

1
y(t−L) ∑

v
max
vi=v

y(ti −L)

and so focus our effort on estimating the quantity∑vmaxvi=vy(ti −L), which does not depend on the

query timet. As before,y(ti − L) can be computed on arrival of the item, and does not vary with

time. So we can write the weight of itemi as W i, t) = wi = y(ti − L), and the desired quantity is

∑vmaxvi=vwi. This now corresponds exactly to the “dominance norm” defined in (26). The most

efficient method to approximate this quantity is due to Pavanand Tirthapura (67), which generalizes

techniques for counting the number of distinct items. Applied to our problem, the time cost is̃O(1/ε2)
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(with Õ notation suppressing polynomial factors in logn and logε). Each update takes timẽO(1) time.

The result is correct up to relative error 1± ε with high probability.

5.5 Sampling Under Forward Decay

The aggregate computations discussed in the previous section are each somewhat specific to a

particular goal: finding heavy hitters, quantiles, and other pre-defined aggregates. It is also useful to

generate generic summaries of large data, on which ad-hoc analysis can be performed after the data has

been observed. The canonical example of such a summary is theuniform random sample: given a large

enough sample, many aggregates can be accurately estimatedby evaluating them on the sample. We

discuss various techniques for sampling from data with weights determined by forward decay functions.

5.5.1 Sampling With Replacement

In sampling with replacement, we aim to draw samples from thepopulation so that in each drawing,

the probability of picking a particular item is the same. Forthe unweighted case, a single sample is

found by the simple procedure of independently retaining the i’th item in the stream (and replacing the

current sampled item) with probability 1/i. Under forward decay, the probability of sampling itemi

should be
W (i, t)

∑n
i=1W (i, t)

=
y(ti −L)

∑n
i=1y(ti −L)

Theorem 5.5.1.We can draw a sample with replacement under forward decay in constant space, and

constant time per tuple.

Proof. A simple generalization of unweighted version suffices to draw a sample according to this defi-

nition. LetWi = ∑i
j=1y(t j −L) denote the sum of the weights observed so far in the stream, upto and

including itemi. We choose to retain theith item as the sampled item with probabilityy(ti − L)/Wi .

The probability that theith item is chosen as the final sample is given by

y(ti −L)

Wi

n

∏
j=i+1

(
1−

y(t j −L)

Wj

)
=

y(ti−L)

Wi

n

∏
j=i+1

Wj−1

Wj
=

y(ti−L)

Wn
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For a sample of sizes, we repeat this procedures times in parallel with different random choices in

each repetition. As in Reservoir Sampling (77), the procedure can be accelerated by using an appropri-

ate random distribution to determine the total weight of subsequent items to skip over.

5.5.2 Sampling Without Replacement

A disadvantage of sampling weighted items with replacementis that an item with heavy weight can

be picked multiple times within the sampled set, which reveals less about the input. This is a particular

problem when applying exponential decay, when the weights of a few most recent items can dwarf all

others. There are many formulations of weighted sampling without replacement (65). Here, we outline

two approaches that work naturally for forward decay. Both are based on the observation that, since

sampling should be invariant to the global scaling of weights, we can work directly withy(ti−L) as the

weight of theith item.

Weighted Reservoir Sampling. In weighted reservoir sampling (WRS), a fixed sized sample (reser-

voir) is maintained online over a stream. The algorithm of Efraimidis and Spirakis (37) draws a sample

of sizek without replacement, with same probability distribution as the following (offline) procedure:

At each stepi, 1≤ i ≤ k, select an element from those that were unselected at previous steps. The prob-

ability of selecting each element at stepi is equal to the element’s weight divided by the total weights

of items not selected before stepi.

The (online) algorithm in (37) generates a “key”pi = u1/wi
i for the ith tuple, wherewi is the weight

andui is drawn randomly from[0. . .1]. The sample is the set ofk items with thek largest key values.

Since we can factor outy(t−L) in forward decay and this does not affect the sampling probability for

each element, we can set the weight of each tuplewi = y(ti −L), and obtain a sample according to the

weights in the forward decay model.

Priority Sampling. Priority sampling due to Alonet al. (4) also generates a sample of sizek, with a

similar procedure: now, the priorityqi is defined aswi/ui (whereui is again uniform from[0. . .1]), and

the algorithm retains thek items with highest priorities. Such a sample can be used to give an unbiased

estimator for any selection query. The variance of this estimator is proved to be near-optimal. For

similar reasons, priority sampling can also be used over thestreams with any decay function within the

forward decay model.



www.manaraa.com

132

Theorem 5.5.2. We can maintain a weight based reservoir of stream elements under the WRS or

priority sampling models for any decay functions in the forward decay model using space O(k) and

time O(logk) to process each element.

The time bounds for the theorem follow by keeping the keys/priorities in a priority queue of size

k. To our knowledge, there is no way to draw such samples over a stream for general backward decay

functions without blowing up the space considerably greater thank.

5.5.3 Sampling Under Exponential Decay

The special case of drawing a sample under exponential decayhas been posed previously, and a

partial solution given for the case when the time stamps are sequential integers (2). By using the forward

decay view, we are able to provide a solution for arbitrary arrival times, using space proportional to the

desired sample size.

Corollary 5.5.2.1. We can draw a sample of size k with weights based on exponential decay in the

backward decay model using only O(k) space.

The corollary follows immediately from the algorithms in Section 5.5.2, and the fact shown in

Section5.3.1that forward and backward exponential decay coincide. Thisstrictly improves previously

known solutions, and is quite simple, relying only on the ability to draw a weighted sample. This

observation was possible by viewing the problem through thelens of forward decay; it appeared much

more complex when viewed as a backward decay problem.

5.6 Implementing Forward Decay

5.6.1 Numerical issues

A common feature of the above techniques—indeed, the key technique that allows us to track the

decayed weights efficiently—is that they maintain counts and other quantities based ony(ti −L), and

only scale byy(t − L) at query time. But whiley(ti − L)/y(t − L) is guaranteed to lie between zero

and one, the intermediate values ofy(ti−L) could become very large. For polynomial functions, these

values should not grow too large, and should be effectively represented in practice by floating point
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values without loss of precision. For exponential functions, these values could grow quite large as

new values of(ti − L) become large, and potentially exceed the capacity of commonfloating point

types. However, since the values stored by the algorithms are linear combinations ofy values (scaled

sums), they can be rescaled relative to a new landmark. That is, by the analysis of exponential decay

in Section5.3.1, the choice ofL does not affect the final result. We can therefore multiply each value

based onL by a factor of exp(−α(L′−L)), and obtain the correct value as if we had instead computed

relative to a new landmarkL′ (and then use this newL′ at query time). This can be done with a linear

pass over whatever data structure is being used.

5.6.2 Out-of-order and Distributed arrivals

It has recently been noted that many streams in practical applications do not arrive in exactly sorted

order: delays or merging multiple streams can result in “late” arrivals. Under backward decay, this

can require significant effort to accommodate (14; 25). But for our forward decay methods, it is quite

straightforward to accommodate, since nowhere do any of ourproposed algorithms rely on items arriv-

ing in increasing order of timestamps. The only caveat is that we should ensure that queries are posed

with time valuest that are at least as big as the largest timestampti observed so far—otherwise some

decayed weights could exceed 1. Alternately, if we allow items whose time stamps are “in the future”

relative to the query time parametert, then one can pose historical queries in the forward decay model.

Similarly, we have phrased the discussion so far in terms of asingle, centralized system. But the

current trend is towards distributed, parallel systems (orwithin a single, multi-core, CPU). We comment

that the definition of forward decay naturally extends to this model, and that all the techniques for

aggregate computation and sampling discussed apply naturally to this scenario. In particular, given the

data structures computed at each centralized site for the same decay function and landmark, they can

easily be merged to form a data structure summarizing the union of the inputs. These details are mostly

immediate from the definitions of the algorithms.

5.7 Related Work on Time Decay

Related work on computing aggregates and samples with time decay has focused on two cases:

sliding window decay, and other decay functions.
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(a) Optimized cost of SUM and COUNT queries (b) Unoptimized cost of SUM and COUNT queries

(c) CPU load asε is varied for EH (d) Space usage asε is varied for EH

Figure 5.2 Experiments on Count queries under time decay

Sliding Window. The notion of a sliding window is a natural one when processing a stream of updates:

since there are too many tuples to store (especially when processing joins), simply drop the oldest

tuples. This simple definition holds much complexity, and has led to numerous papers and theses on

processing this definition (see (43) and references therein). Various models have been proposed for the

semantics of sliding windows. The Aurora system (15) defines sliding windows, which can overlap;

tumbling windows, which have no overlaps; and latched windows, which are tumbling with preserved

internal states. Liet al. (55) propose an approach based on panes: each window is divided into panes

consisting of multiple tuples, so that each “slide” drops the oldest pane. GS typically provides tumbling

window semantics by allowing queries to be based on “time-buckets” (34).

However, evaluating aggregate queries over sliding windows—even simple queries based on sum

and count—can require a lot of state to be maintained, since tuples must be stored until they expire

to correctly compute their effect on the aggregate. Consequently, there has been much research on
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approximate computation of aggregates under sliding windows using much smaller space resources.

The earliest work focused on tracking sums and counts: both Exponential Histograms (EH) (35) and

Deterministic Waves (42) answer these queries on a window of sizeN with relative errorε by keeping

a careful arrangement ofO(1
ε logεN) counts and timestamps. They can extend to more complex aggre-

gates by replacing their internal counts with other data structures such as sketches, but this causes the

space to blow up by further multiples of1
ε and logN.

For more complex holistic aggregates, such as quantiles andfrequent items, Arasu and Manku pro-

posed a generic approach with cost only a log1
ε logN factor larger than the unwindowed approximate

algorithms (7). Lee and Ting (54) reduce the space for frequent items for a fixed size window toO(1
ε ),

the same as the unwindowed case. There has also been recent interest in handling cases where tuples

with timestamps do not arrive in timestamp order: results have been shown for sums and counts (14),

sampling (30) and quantiles and heavy hitters (25). This flexibility comes at a cost: the bounds are

further logarithmic factors more expensive than their ordered counterparts. Likewise, methods for

sampling from a sliding window require space logarithmically (in the number of tuples in the window)

larger than the desired sample size (9).

Other decay functions: exponential and polynomial decay.Among other decay functions, expo-

nential decay is most popular, since a regular counter can bereplaced with an exponentially decayed

counter without increasing the (asymptotic) space cost. More recently, there has been interest in ex-

tending to aggregates beyond sums and counts, including sampling under exponential decay (2), and

quantiles and heavy hitters (24), which obtain the same space bounds as the undecayed case. We ex-

plain this by our model, where forward and backward models ofdecay coincide for exponential decay.

For backward decay with other functions, such as a polynomial, the space cost is typically (much)

higher. Cohen and Strauss introduced a variety of techniques for tracking sums and counts under

backward decay (21), with costO(1
ε logN). This was extended to sampling and aggregate compu-

tation (30; 25), with similar blow-ups of poly(1
ε , logN) over the undecayed version. Our main results

show that, in the different model of forward decay, all computations can be done in the same asymptotic

resources as for undecayed aggregates.
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5.8 Experimental Evaluation

In this section we present the results of experimental evaluation of several aggregate and sampling

streaming algorithms under forward and backward decay models.

Experimental Set-Up and Environment. All the experiments were done in the context of the GS

streaming database (33). For simple aggregate queries (sum and count), we could write these using

the built-in GSQL aggregate functions,count() andsum(). We compared the cost of these to that

for Exponential Histograms (EH) (35), with variations for both sum and count. This makes for an

interesting comparison, since, following the analysis of Cohen and Strauss (21), the EH is capable of

approximating sum and count under any decay function (forward or backward) specified at query time:

we can rewrite the decayed sum (resp. count) query as a sum of multiple scaled sliding window sum

(count) queries, each of which can be answered approximately by the same EH data structure. So we

can compare the cost of exactly computing the forward decay query to the best previous method, which

would approximate it. We also compare against the baseline of directly computing the sum and count

of the data, without adjusting for time decay.

For sampling, we performed a similar comparison against three classes of decay: no decay, forward

decay, and backward decay. We used the traditional reservoir sampling approach to draw an unweighted

sample (77), and compared the cost of this to priority sampling being supplied with exponentially

increasing weights (4) and our implementation of Aggarwal’s method for sampling under exponential

decay (2). For the backward decay, all weighting is internal to the UDAF implementing the decay,

while for priority sampling, the UDAF implements standard priority sampling and the query generates

the weights based on timestamps to feed in.

We also implemented weighted heavy hitters through the UDAFmechanism, using C code for the

weighted version of the SpaceSaving algorithm discussed inSection5.4.31. Here, we compared to a

method for answering sliding window heavy hitter queries (25). As in the sum and count case, it can

be shown that the results of multiple sliding window queriescan be combined to form the answer to an

arbitrary (forward or backward) decayed heavy hitter query. So again, we are comparing our techniques

to approximate aggregate queries under decay with the best known previous method that could be used

1Our code is based on the routines athttp://www.research.att.com/~marioh/frequent-items.

http://www.research.att.com/~marioh/frequent-items
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(a) Sampling as traffic load varies (b) Sampling as sample size varies

Figure 5.3 Experiments on Sampling Queries under time decay

to accomplish it. We contrast both these decayed measures tothe undecayed computation of heavy

hitters, where we can use a version of the SpaceSaving algorithm that is optimized for unweighted

(unary) updates.

All the experiments were conducted on live high-speed network traffic. We used two-CPU, dual-

core 3.0Ghz Intel Xeon server with 4Gbytes of RAM running Linux 2.4.21, however only one core

was used to run the code. In the course of the experiments the volume of observed network traffic

was approximately 400,000 packet/sec (about 1.8 Gbit/sec). We could vary the effective stream rate

presented to the system by adjusting the flow sampling rate performed in hardware on the network

interface card.

5.8.1 Experimental Results.

Count and Sum Aggregates.These queries computed a summary (count or sum) of the traffic(pre-

sented as packets) sent to distinct TCP servers every minute. The undecayed query is expressed in

GSQL as:

select tb, destIP, destPort, count(*)

from TCP

group by time/60 as tb, destIP, destPort

We compared the performance of sum and count queries with their weighted (backward and for-

ward) counterparts. The results are shown in Figure5.2. Figure5.2(a)shows the effect as we varied
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the stream rate from 100,00 packets/sec to 400,000 packets/sec and observed the total CPU load. This

shows the cost of forward-decayed aggregates with quadratic (“poly”) and exponential decay (“exp”)

is a little higher than processing without decay, while supporting backward decay via exponential his-

tograms (with parameterε = 0.1) has appreciably higher cost, and nearly saturates the system under

high traffic load. For undecayed and forward-decayed aggregates the GS system can optimize the query

over the system’s two-level architecture. More precisely,the system splits the query into a low-level

part performing partial aggregation using fixed-size hash-table and a super-aggregation query combin-

ing partial results. Our UDAFs were written to run at the high-level only. Figure5.2(b) shows our

effort to remove this advantage for the same queries by disabling this aggregate splitting in the system.

However, there is still an appreciable cost of backward decay over forward decay.

This benefit becomes more pronounced as we vary the accuracy parameterε of the exponential

histograms. Recall that exponential histograms give an answer that is approximate to within relative

error 1+ε , while the other queries are computed exactly. For the same queries as before, we decreased

ε down to 0.01, while the stream data rate was set to 100,000 packets/second (Figure5.2(c)). The

throughput of undecayed and forward decayed aggregates does not alter, since they do not depend on

ε . At ε = 0.01, the backward decayed algorithms approach 100% CPU utilization and drop tuples.

We show the space usage per group of our methods on a log-scalein Figure5.2(d). Undecayed

methods store 4 byte integers, while forward decay stores 8 byte floating point values. The exponential

histogram methods must track a large amount of information,of the order of kilobytes. This is a major

factor for our queries, since they typically generate tens of thousands of groups (in the query above,

there is one group for every distinct TCP destination seen ina minute on a busy link).

Random Sampling. Our experiments on drawing random samples are shown in Figure 5.3. The

sampling techniques are all implemented as UDAFs in C code, which are then called by GSQL queries

as

select tb, PRISAMP(srcIP, exp(time % 60))

from TCP

group by time/60 as tb

In this query, a sample is drawn every minute, with the landmark set to zero seconds within that

minute.PRISAMP references the priority sampling UDAF (in this case), whichis passed the (exponen-



www.manaraa.com

139

(a) CPU load asε varies (TCP data) (b) CPU load asε varies (UDP data)

(c) Space usage asε varies (TCP data) (d) Space usage asε varies (UDP data)

Figure 5.4 Experiments on Heavy Hitter queries under time decay

tial) weight of the timestamp of the tuple.

We compare computing a fixed-size reservoir sample without decay to the two algorithms designed

to draw a sample under exponential decay. Figure5.3(a)shows the CPU usage as the stream data

rate was varied from 100,000 to 400,000 packets per second. This plot shows only the cost of sample

maintenance, and not the cost of the running selection operator which filters out TCP traffic, since

this cost is the same for all algorithms. All three algorithms scale well and experience less than 10%

increase in CPU load as the data rates increases from 100,000to 400,000. The CPU load is comparable

for all algorithms, meaning that we can achieve the more flexible result of the forward based decay

(arbitrary timestamp values, and arbitrary arrival order)at virtually no cost over the previous solution.

Moreover, Figure5.3(b)shows that the cost of the three sampling methods all appear independent of

the sample size. (Note that the space used by the methods is essentially that of size of the sample,
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Figure 5.5 Experiments on HH performance as stream rate varies

plus some small additional values such as stored priority values, so we do not show any plots of space

used). Note that we can obtain samples under other forward decay functions at the same cost, whereas

exponential decay is the only backward class model for whichefficient sampling algorithms are known.

Heavy Hitter Aggregates.Our experiments on holistic aggregate computation concentrated on finding

heavy hitters. For each one minute interval, the query identifies a set of network hosts receiving the

most TCP traffic. We show the dominant cost, of maintaining the summary under updates, and do

not plot the small final cost of extracting the heavy hitters.We varied the stream rate from 50,000

packets/sec to 200,000 packets/sec and observed the total CPU load. For forward-decayed aggregates,

we compared both exponential and quadratic decay as before.

Figure5.5 shows that the overhead of the weighted version of the heavy hitters algorithm is small

compared to version optimized for unweighted updates (“Unary HH”). We also see that there is little

variation as a function of the decay function. As we argued inour introductory analysis, the sliding

window-based implementation of backward decay is much moreexpensive due to the complexity of

the associated algorithms. At 200,000 packets/sec, the system reached 90% CPU utilization (nearing

instability), and further increases in the data rate causedtuple dropping. Although it allows arbitrary

decay functions to be specified at query times, this form of backward decay is simply not practical to

run in a streaming system.

This is further highlighted in Figures5.4(a)and 5.4(c), which show CPU and space usage (log

scale) respectively asε varies. The stream data rate here was set to 200,000 packets/sec using flow

sampling on the network card. Atε = 0.01, the backward decayed algorithms approach 100% CPU
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utilization and further increases in data rate cause tuple drops. The CPU usage of the weighted algo-

rithms implementing forward decay is fairly robust to the value of ε , and the space depends on 1/ε

(the space is still of the order of kilobytes, but one typically expects such aggregate queries to be run

over somewhat fewer groups than sum or count queries). Note that the space of the backward decayed

approach does not vary withε : this is because it does not have much pruning power over the num-

ber of tuples presented, and so it is effectively storing a large fraction of the total input. This is also

unsustainable in a high-throughput streaming system.

Lastly, Figures5.4(b)and5.4(d)show the same experiments performed over UDP data. Here, we

took the same query over only the UDP traffic (specified by adding an additional selection to the query).

The stream data rate was set to 170,000 packets/sec, while the rest of the experimental settings were

the same as in previous experiments. We see that the behaviorof the algorithm is virtually unchanged

despite the different characteristics of UDP data. The space required by Sliding Window approach

is slightly lower, but still orders of magnitude higher thanthat for forward decay (about a megabyte

compared to 1KB–6KB, depending onε).

5.9 Concluding Remarks

In this chapter, we have proposed a new class of time decay forstreaming systems, based on a

forward view of the decay. It is effective to implement in streaming systems, and has a low overhead

compared to processing undecayed queries, making it much more attractive than prior algorithms.

One feature of the decay is that it fits easily into distributed systems seeing different parts of an

input that is to be combined. It will be interesting to study how to integrate this model of time decay

into not just distributed streaming systems, such as Borealis (1), but also the new generation of popular

distributed processing systems such as MapReduce (36), Hadoop (47) and Sawzall (68).
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CHAPTER 6. Conclusion

In this thesis, we proposed the concept of asynchronous datastreams. We showed asynchronous

data stream is a more natural model for the streaming data transmitted through distributed systems than

the previous synchronous data stream model, and it is therefore a robuster model for distributed data

stream monitoring.

We focused on the time-decayed data aggregation over asynchronous data streams. We showed

that previous work on synchronous data stream cannot be trivially extended for the asynchronous data

stream. We proposed the first time and space efficient sketches for summarizing multiple asynchronous

data streams over timestamp sliding windows. The sketch is further improved so that it can be used for

general purposed network streaming data monitoring in a communication-efficient way.

Our techniques for asynchronous data stream processing were further explored in its usage for

correlated data aggregation over data streams. We not only closed the open problem of sliding window

based correlated data aggregation, but also did the first comprehensive study on the correlated data

aggregation for asynchronous data streams under any arbitrary time decay functions. We proposed

time and space efficient algorithms for the easy cases, and showed large space lower bounds for the

hard cases.

We proposed forward-decay, a new time decay model for down weighting old elements in the

stream. We showed that forward-decay captures a variety of time decay functions in the usual backward

decay model. We showed forward decay significantly simplifies the data aggregation and sampling over

data streams by providing much simpler and more efficient algorithms.

We conclude this thesis with the following future directions.
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6.1 Future Work

In general, all the problems that have been studied using thesynchronous data stream model should

be re-investigated when the asynchrony in the data stream becomes a matter. Although in some scenar-

ios a solution for the synchronous stream case can be used forthe asynchronous stream case by paying

extra cost in the time and space, it is of research interest whether this extra cost can be waived. In other

scenarios, novel techniques become a must. We list a few of such examples here.

Population variance.Maintaining a good estimate for the population variance over sliding windows of

a synchronous stream is well studied (10; 80) and optimal solutions exist, while the same problem under

the asynchronous stream model still remains open. Histogram techniques used in the synchronous

stream case highly relies on the sequential order in the dataarrival, and it is not known how to extend

it for the asynchronous stream. Similarly, it is not known how to use sampling technique to maintain a

probabilistically accurate estimate for the variance oversliding windows of an asynchronous stream.

Tighter bound for basic counting. Basic Counting over a sliding window is a fundamental problem in

stream processing (35). The known best space lower bound ofΩ(log2w/ε) bits, wherew is the window

size, is optimal for both deterministic and randomized algorithms in the synchronous stream case.

The current best space upper bound for asynchronous stream is O((log3w/ε)) bits for deterministic

algorithms (30) andO(log2w/ε2) bits for randomized algorithms (79). Closing the gap between the

lower and upper bounds is an open problem.

Tighter bound for heavy hitters The best space upper bound for maintaining heavy hitters over slid-

ing windows isO(1/ε) words (54) for the synchronous stream case. The idea is to use the Misraand

Gries algorithm (60) but replace the simple counter with a sketch counter (called λ -counter in (54)),

which approximately tracks the number of each distinct value in the window. An observation is that

the sketch counter only needs to be of additive error guarantee. However,λ -counter does not work in

the asynchronous stream setting. The sketch counters designed in (30; 79) for asynchronous streams

are also over-killed since they have a relative error guarantee, and thus are too complex and inefficient

in space. Finding a more space efficient sketch counter for basic counting over sliding windows in

asynchronous streams may lead to more efficient and simpler algorithms for heavy hitters.
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Semi-asynchronous streams.So far our asynchronous data stream model does not assume an upper

bound in the transmission delay of any data element. In reality, if the data element is delayed at any

intermediate device for longer than a preset threshold, it will be discarded. Therefore, the real data

stream observed by the processor has an upper bound in the latency of its data arrival. We call such

data streams, where the data arrival latency is bounded, as semi-asynchronous streams. By taking

advantage this latency bound, we may improve the performance of existing algorithms which were

designed for asynchronous stream processing.
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