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ABSTRACT

Many real world data naturally arrive as rapid paced andi&ily unboundedtreams Examples
of such streams include network traffic at a router, evenseled by a sensor network, accesses to
a web server and transactional updates to a large databasle steeaming data need to be monitored
online to collect traffic statistics, detect trends and aalgs, tune system performance and help make
business decisions. However, because of the large sizeapitlpace of the data, as well as the online
processing requirement, conventional data processingausf such as storing the data in a database
and issuing offline SQL queries thereafter, are not feasibkga stream processing is a hew diagram
of massive data set processing and creates new challentiesalyorithm design and implementation.

In this thesis, we considdime-decayediata aggregation for data streams, where the importance
or contribution of each data element decays over time, siacent data are usually considered of
more importance in applications, and therefore are givewibe weights. We design small space data
structures and algorithms for maintaining fundamentalkregates of the streams if it is possible and
otherwise show large space lower bounds.We consider tleaggiregation over a robust data stream
model calledasynchronous data streammotivated by the streaming data transmitted in distridbute
systems, including computer networks, where the asynghirotihe data transmission is inevitable. In
asynchronous data stream, the arrival order of the dataeslsnat the receiver side is not necessarily
the same as the order in which the data elements were geherAwy/nchronous data stream is a
robuster and generalized model of the previous synchrodatzgsstream model.

In summary, this thesis presents the following results:

e We formalize the model of asynchronous data stream and tiennaf timestamp sliding win-
dow. We propose the first small spagleetchfor summarizing the data elements over timestamp
sliding windows of multiple geographically distributedyashronous data streams. The sketch

cangreturnzaceuracy,guaranteed estimates for basic aggsegach as: Sum, Median and Quan-
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tiles.

e We design the first small space sketch for general purposerestreaming data aggregation.
The sketch has the following properties that make it usefudldmmunication-efficient aggre-
gation in distributed streaming scenarios: (1) The sketnh ltandle multiple geographically
distributed asynchronous data streams. (2) The sketchpigcdte-insensitive, i.e. reinsertions
of the same data will not affect the sketch, and hence thematss of aggregates. (3) The sketch
is also time-decaying, so that the weight of each data elesuenmarized in the sketch decreases
over time. (4) The sketch returns accuracy guaranteed &stinfor a variety of core aggregates,

including the sum, median, quantiles, frequent elemerdssalectivity.

e We conduct a comprehensive study on the time-decage@lateddata aggregation over asyn-
chronous data streams. For each class of time decay funet®either propose space efficient
algorithms or show large space lower bounds. We not onlyesltise open problem of correlated
data aggregation under sliding windows decay, but alsceptesiegative results for the case of

exponential decay, which however is highly used in the nometated scenarios.

e We propose théorward decaymodel to simplify the time-decayed data stream aggregatiwh
sampling. Forward decay captures a variety of usual decagtituns (or calledackward decay
such as exponential decay. We design efficient algorithmsldta aggregation and sampling

under the forward decay model, and show that they are easydlernent scalably.
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CHAPTER 1. Introduction

Many real world data naturally arrive atreams Examples include network traffic at a router,
events observed by the sensor motes of a wireless sensarketmebpage requests to a web server
and transactional updates to a large database. Contribyt#ite advancement of modern computer
and Internet technologies, such streaming data has becayly paced and massive, compared to
the ability of computing, storing and transmitting that tteta processor can provide. For example,
an OC48 link has its standard transmission rate at 2.5 Gbitsgrond, much more than the storage
capacity of a normal computer, and the flowing data are evermgtuck to take a scan of it; In the
recently emerging wireless sensor network applicatiomsnts observed by the battery powered tiny
sensor mote can quickly overwhelm the mote’s memory.

However, these streaming data need to be monitored to tadédtic statistics, detect trends and
anomalies, tune system performance and even help makesbagiacisions. In some applications, re-
altime queries and answers are even demanded. For exarsplach engine may want to continuously
maintain a list of hot searching keywords mined from the wvasstreams of searching queries that the
search engine has received from the users. However, beohtlse large size and rapid pace of the
data as well as the demands for realtime queries and ansseergentional data processing methods,
such as storing the data in a database and issuing offline 8€ieq, are not feasible.

The goal in data stream processing research is to answetiangeske: Given such amount of
time and space, and a data steam or multiple streams ari@ingch a pace, what query about the
streams can we answer ? If not, can we give an approximateeafiginthe query ? How accurate the
approximate answer can we guarantee ? Or can we show thabtiiem is inherently unsolvable in a
streaming fashion using such limited space and time budgégypical challenges in the algorithms

design and implementation for the data stream processegsiiollows.

IThealgerithmsmustuse small workspace. Because oflitedi memory space and the virtually
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unbounded stream size, the space cost of the algorithmlysoast be poly-logarithmic in the
size of the streams and sometimes even independent frontréfaenssize. A small workspace
also help in processing stream elements more quickly bycieduhe time cost in scanning and

searching through the data structures.

2. The algorithm must process each stream element quickisdier to keep up with the pace of the

stream.

3. Constrained by the small space budget, one-pass pnogesfsihe stream is required, since we
are incapable to store the majority of the stream and thexdfave no chance to visit old data

elements. One-pass processing is also needed to supptnuos queries.

4. Queries of interest can be submitted at anytime duringttieam processing. Answers should be
returned immediately regarding the data that have beetvegteo far. Answers for the queries

can comprise a new stream and can be the input of anothemspregessor.

5. In many scenarios, the sacrifice of fast processing andl sroekspace is to lose the accuracy
in the answers for queries. Although approximate answersieceptable in many applications,

error in these approximations need to be well bounded.

1.1 Asynchronous Data Streams

In this thesis, we particularly focus @synchronous data strean(i@efinition 1.3.1), motivated by
the data streams transmitted in distributed systems imgjugetworks. In distributed stream process-
ing, it is necessary to deal with the inherent asynchronjhénrtetwork through which data is being
transmitted. Nodes often have to process composite da@nssrthat consist of interleaved data from
multiple data sources. One consequence of the network lymgc is that in such composite data
streams, the arrival order of the stream elements is notseadfy the same as the order in which the
elements were generated. We call such a data stream as a@asyous data stream.

Asynchronous data streams are inevitable anytime tworagesayA andB, fuse with each other
and the data processing has to be done on the stream formdx lnytérleaving ofA andB. Even

if individual streamsA or B are not inherently asynchronous, when the streams are, ftieedtream
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could become asynchronous. For example, if the networkydeleeceiving streanB is greater than
the delay in receiving elements in stred@nthen the the stream processor may consistently observe
elements with earlier timestamps frddrafter elements with more recent timestamps frdam

In asynchronous data streams the order of “recency” of tkeeay not be preserved. The notion
of recency can be captured with the help of a timestamp assolcivith the stream element. The greater
the timestamp of an element is, the more recent the elemefsysmichronous stream is a more natural
model for data streams transmitted in distributed systé@s the synchronous stream model, and it is

therefore robuster for distributed data stream monitoring

1.2 Distributed Data Streams Processing Diagram

In applications involving distributed data sources, suchantent distribution, intranet monitoring,
and sensor data processing, no single node observes alydatggregates should be computed over
the union of the data observed at all the nodes. Therefoienécessary to answer aggregate queries
for the union of all the streams distributively. A naive apgeh to solve such problems is to send all
streams to a single aggregator. However, this approacloisdstly, since there is a communication
and energy cost for every data item in every stream. Thusjdke streams have to be combined in
a more efficient way in order to minimize the use of networloueses. This is critical especially in
sensor networks where nodes are typically battery opetseides.

In our approach, we place an aggregator for each stream. dgmrhgator maintains a small space
sketchsummarizing its local stream. All the sketches for locataitns can be combined distributively
to create the sketch for the union of streams (Figud®. The sketch for the union can be used to
answer queries regarding the union of streams. The sketdhlesal streams will be combined in
a compact and lossless way, i.e., the space complexity andamy guarantee of the sketch for the
union is the same as those for local streams. Also, the sketctihhe union can be constructed on
demand, whenever new queries are issued. Unlike previouk (#8; 41, 57) that considered the
synchronous model on distributed streams, this thesidaenssaggregate computation over distributed

streams under asynchronous arrival.
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1.3 Data Stream Model

We model a stream &8 = (e1,ey,...,&,), whereg is received earlier thag; for any pair ofi and
j, i < j. Note thate, is the most recently received element anchn be infinitely large. Each stream

elementg, 1 <i <n, is a tuple(vi,wi,t;,id;), where the entries are defined as follows:
e V; is a positive integer value
e W; is a weight associated with the value
e tj is the integer timestamp, tagged at the tieras created.
e idj is a unique id forg.

This abstraction captures a wide variety of cases that cambteded in this form. It is deliberately
general; users can choose to assign values to these fieldis tioesr needs. For example, if the desired
aggregate is the median temperature reading across alhétisobservations, this can be achieved
by setting all weights tayv; = 1 and the values; to be actual temperatures observed. The unigue
observation idd; can be formed as the concatenation of the unique sensor itina@af observation
(assuming there is only one reading per instant). We shadlgiore examples in Chapt8r

We consider asynchronous data stream. In other words, ddsilple that in strearR an element
tagged with a larger (and thus newer) timestamp is receigdteethan an element of a smaller (and

thus older) timestamp. More formally, we define an asynabusrdata stream as follows.

Definition 1.3.1(Asynchronous Data Stream$tream R is an asynchronous data stream if for any pair

ofiand j,1<i< | <n,itis possible that t> t;.

Our stream model also allows the possibility that the sansemation appears multiple times in
the stream, with the same id, value, weight and timestanmgepred across multiple appearances. Such
occurrences exist in real network environment due to theitpath routing to increase the chance of
data delivery, yet only one copy of such repeated occurseshbeuld be considered while evaluating
aggregates over the stream. Note that our model allowseliffelements of the stream to have different
ids, but the same values, weights and/or timestamps — inastabke, they will be considered separately

in computing the aggregates.
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1.4 Time Decay

In most evolving settings, recent data is more reliable aremmoportant than older data. We should
therefore weigh newer stream elements (with larger tinmes$d more heavily than older ones. This
can be formalized in a variety of ways: we may only considea @&ements that fall within aliding
window of recent time (say, the last hour), and ignore (assign ze&ight to) any that are oldeB%);
or, more generally, use an arbitrary function that assigmeight to each data element as a function of
its initial weight and age2l).

Theageof an element is defined as the elapsed time since the elenasntr@ated. Thus, the age
of element(v,w,t,id) at timec is c—t. A decay function takes the initial weight and the age of an

element and returns ittecayed weight

Definition 1.4.1. A decay function (w,x) takes two parameters, the weightwd, and an integral age
x > 0, and should satisfy the following conditions. (I(wfx) > O for all w,x; (2) if wy > wy, then

f(wg,x) > f(wa,X); (3) if X1 > %o, then flw,x;) < f(w,x2).

The decayed weight of an elemémtw,t,id) at timec >t is f(w,c—t). In Chapter5, we will also
call such decay function as backward decay, since the vdlitelepends on the element’s age which

is computed by looking from the current time backward to tleenent’s timestamp.

1.4.1 Decomposable Decay Functions

Decomposable decay is a class of decay functions and isgrbpubked in applications.

Definition 1.4.2. A decay function (fw, x) is a decomposable decay function if it can be written in the

form f(w,x) = w-g(x) for some function @.

Note that the conditions on a decay functibfw,x) naturally impose the following conditions on
g(): (1) g(x) > 0 for all x; (2) if X1 < X2, theng(x1) > g(x2). In the rest of this thesis, we will also call

g(x) decay function if the context is clear. The following are myde decomposable decay functions.

No decay. The trivial functiong(x) = 1 weights all ages equally. This means that the time-decayed

model captures prior work on non-decayed aggregates.
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Sliding window. Given a “window size” paramete¥y, the functiong(x) = 1 for x <W andg(x) =0
for x > W captures the common sliding window semantics—only itemasglage is less than or equal

toW are considered.

Polynomial decay. Given a constant > 0, the polynomial decay function is defined g&) =

(x+1)72

Exponential decay.Given a constantr > 0, the exponential decay function is definedyag = 2%

Exponential decay with a different base can also be writiehis form, sincea* = 2-410%:(a)x,

Super-exponential decay.A decay functiong(x) is super-exponential, if there exist constaats- 1
andc > 0, such that for everx > c, f(x)/f(x+1) > 0. Examples of such decay functions include:
(1) polyexponential decag21): g(x) = (x+ 1)*2-9*/k! wherek > 0, anda > 0 are constants. (2)

g(x) = 2= \wherea >0 andB > 1.

Converging decay. A decay functiong(x) is a converging decay function ¢f(x+ 1)/g(x) is non-
decreasing withx. Intuitively, the relative weights of elements with difésit timestamps under a
converging decay function get closer to each other as tines ¢9g. As pointed out by Cohen and
Strauss?21), this is an intuitive property of a time-decay function @veral applications. Many popular
decay functions, such as exponential decay and polynoracdyd are converging decay. Converging

decay also includes the no decay caxe) = 1.

Finite decay. A decay function is defined to be a finite decay function witk lignit N, if there exists

N > 0 such that foxx > N, g(x) = 0, and forx < N, g(x) > 0. Examples of finite decay include (1)

sliding window decay, where the age lin\tis the window size. (2) Chordal decay with an age limit
N—1(21): g(x) =1—x/Nif 0 <x < N andg(x) = 0 otherwise. Obviously, no finite decay function is
a converging decay function, singéN + 1) /g(N) = 0 whileg(N)/g(N —1) > 0.

1.5 Thesis Contributions

In this thesis, we focus on time-decayed asynchronous daans processing. We design time
and space efficient algorithms for data aggregations indttang of distributed data streams. We also
show large space lower bounds for problems that are inHgreatd. The following are the main

contributions of this thesis.
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e We formalize the model of asynchronous data stream and tiennaf timestamp sliding win-
dow. We propose the first small spagieetchfor summarizing the data elements over timestamp
sliding windows of multiple geographically distributedyashronous data streams. The sketch
can return accuracy guaranteed estimates for basic aggsegach as: Sum, Median and Quan-

tiles. (ChapteR)

e We propose the first small space sketch for general purpaseriedata aggregation. The
sketch has the following properties that make it useful imownication-efficient aggregation
in distributed streaming scenarios: (1) The sketch canlbaasl/nchronous data streams. (2)
The sketch is duplicate-insensitive, i.e. reinsertionghefsame data will not affect the sketch,
and hence the estimates of aggregates. (3) The sketch isratsalecaying, so that the weight
of each data element summarized in the sketch decreasesimeeaccording to any arbitrary
user-specified decay function. (4) The sketch can give ptgvapproximate guarantees for a
variety of core aggregates of data, including the sum, nmedjaantiles, frequent elements and
selectivity. (5) The size of the sketch and the time takenpate it are both polylogarithmic in
the size of the relevant data. (6) Multiple sketches contpater distributed data streams can be

combined without loss of accuracy. (Chapser

e We conduct a comprehensive study on the time-decagpeglateddata aggregation over asyn-
chronous data streams. For each class of time decay funet®either propose space efficient
algorithms or show large space lower bounds. We not onlyesltise open problem of correlated
data aggregation under sliding windows decay, but alsceptesiegative results for the case un-

der exponential decay, which however is highly used in thecmrelated scenarios. (Chapt@r

e We propose théorward decaymodel to simplify the time-decayed data stream aggregainsh
sampling. Forward decay captures a variety of usual deaatifins (or calledackward decay
such as exponential decay and polynomial decay. We dedigieet algorithms for data aggre-
gation and sampling under the forward decay model, and shatithiey are easy to implement

scalably. (Chaptes)
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1.6 Roadmap

In Chapter2, we consider asynchronous data stream processing overgslidndows and de-
sign small space sketches for data aggregation. This skefaither extended in Chapt8rfor more
general purpose network streaming data aggregation. Weekiend the techniques in processing
asynchronous data stream for the correlated data strearagadion in Chapted. In Chapters, we
present forward decay, a new time decay model to simplifitithe-decayed data stream aggregation

and sampling. We conclude this thesis with several opengmubin Chapte6.

1.7 Declarations

Publications. The work presented in this thesis has been published in tloevfog computer science

conference proceedings and journals. The majority of Hasis derives from these publications.

The work of ChapteR has been published i7%) and (79).
The work of ChapteB has been published i8Q) and @32).
The work of Chapted has been published i81) and @9).
The work of Chapteb has been published i28).

My Contributions. Like many thesis work, my thesis research is a collaboratiogk with my major
professor Srikanta Tirthapura and other researchers frovenrsities and research laboratories. Here |

clarify my contributions in these collaborations.

e The proposal of the asynchronous data stream model, pegsenChaptel, is due to Srikanta
Tirthapura. He also proposed the idea of sampling appraacolving the problem. | finished
the technical proofs under his guidance.

e The proposal of designing a general purpose sketch for mketatoeaming data aggregation,
presented in Chapt& is due to Srikanta Tirthapura and myself. The main algonthideas and
proofs for solving the problem as well as the experimentadysaire due to myself.

e The proposal of the time-decayed correlated data aggoegatresented in Chaptdy is due
to Srikanta Tirthapura and myself. Most of the algorithmsd &wer bound proofs are due to
myself. Graham Cormode improved the space lower bound ®reiponential decay based

correlated sum based on my discovery of the lower bound and nsy proof idea.
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e The work presented in Chaptdiwas done during my visit to AT&T Shannon Laboratory as an
intern in Summer 2008. The idea of forward decay is due todleagues at AT&T. | studied the

sampling techniques under the forward decay model, as welhe of the experimental study.
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CHAPTER 2. Sliding Windows Decay Based Processing

In this chapter, we study the problem of maintaining sketdioe the data elements in the sliding
windows over an asynchronous data stream. The sketchesveaprgvably accurate estimates of two
basic aggregates, the sum and the median, of the stream tensiin the sliding windows. The space
taken by the sketches, the time needed for querying thelsd®tand the time for inserting new ele-
ments into the sketches are all polylogarithmic with respethe maximum window size. The sketches
can be easily combined in a lossless and compact way, maiémg tiseful for aggregating distributed
data streams. Previous works on sketching recent eleméatslata stream have all considered the
more restrictive scenario of synchronous streams, whereltserved order of data is the same as the

time order in which the data was generated.

2.1 Introduction

Beyond the asynchronous data stream model motivated bytrésnsng data transmitted in dis-
tributed systems as we described in Secfioh in many applications, only the most recent elements
in the data stream are important in computing aggregatestatidtics, while the old ones are not. For
example, in a stream of stock market data, a software maytneeatk the moving average of the price
of a stock over all observations made in the last hour. In agtwnonitoring, it is useful to monitor the
volume of traffic destined to a given node during the mostnmewendow of time. In sensor networks,
only the most recent sensed data might be relevant, for deamgasurements of seismic activity in
the past few minutes. Motivated by such applications, thasebeen much work'{38; 42; 10; 35; 57)
on designing algorithms for maintaining aggregates oveliding window(Sectionl.4) of the most
recent elements of a data stream. So far, all work on maintaeggregates over a sliding window has

assumed synchronous streams where the arrival order oftadrda stream is the same as the time
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order in which the data was generated. However, this assmptay not be realistic in distributed
systems, as we have explained in Secfidh

The challenge with maintaining aggregates over a slidimgsitamp window is that the data within
the window can be very large and it may be infeasible to stiogedata in the workspace of the ag-
gregator. To overcome this limitation, a fundamental téme for computing aggregates is for the
aggregator to keep a small spagetchthat contains a summary representation of all the data et h
arrived within the window. Typically, the size of the sketshmuch smaller than the size of the data
within the window. Usually, the goal is to construct skekéhose size is polylogarithmic in the size
of the data within the window. The sketch is constructed irag that it enables the efficient computa-
tion of aggregates. Since the sketch cannot keep completenation of the streams within the small
space, there is an associatethtive error with the answer provided by the sketch, in relation to the

exact value of the aggregate. The size of the sketch depenttiésaelative error.

Data Stream and Goal.Recall that each elemeatin streanRis a tuple(v;, w;,t;,id;) (Section1.3). In
this chapter, we consider a a projection of the str&uwwer the dimensions of thealueandtimestamp
In the projected stream, each elemdnis a tuple(v;,t;). The goal for the aggregator who is receiving
streamR is to maintain small space sketches that can continuousilynr@nswers for queries of the
following form: return an aggregate (say, the sum or theayey of all elements in the current sliding
window, e.g., of those received stream elements whose ttamgs are withiric — w, ¢, wherec is the
clock current time at any instant (Sectib®) andw is the size of the sliding window. When the context
is clear in this chapter, we will still uge to denote the projected stream, e.g.Ret di,d»,...,dy, and
use the term “sliding timestamp window” to refer to all remal items that have timestamps in the

range[c— w,c].

2.1.1 Contributions

First, we give algorithms for computing the sum and mediarhef sliding timestamp window
of the asynchronous streaRithat is being observed by a single aggregator. We then cemthe
distributed case, where we give an algorithm that combinesketches produced by the aggregators,
each of which is observing and sketching a local stream.dmibcussion below, |& a bound on the

maximum-window-size.
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2.1.1.1 Sum

Our first sketching algorithm estimates the sum of all intege streamR which are within any
recent timestamp window of siag <W, i.e. V =3 (yt)crc-w<t<c} V. The algorithm maintains a
sketch using small space, that can be updated quickly wheawaetement arrives, and can give a
provably good estimate for the sum when asked. We will usentit®n of an(e, d)-estimator to

guantify the quality of answers returned by the algorithm.

Definition 2.1.1. For parameterd) < € <1and0 < J < 1, an (¢,d)-estimator for a number Y is a
random variable X such th&r|X —Y| > €Y] < 4. The parametee is called the relative error and

is called the failure probability.
Our algorithm for the sum has the following performance gotees.

e Foranyw <W specified by the user at the time of the query, the sketchngtu( ¢, d)-estimator
of V. The value ofw, the window size does not need to be known when the streamrig be
observed and sketched. Oy, an upper bound ow needs to be known in advance. In other
words, our sketch comprises information abeuerytimestamp window in the stream whose

right endpoint is the current time and whose width is less than or equal¥o

e Space used by the sketchdq (1/€2) -1og(1/3) - 10gVimax: T), WhereVmaxis an upper bound on
the value of the sunw, o is the number of bits required to store an input elentert, € is the

desired relative error, andlis the desired upper bound on the failure probability.
e The time complexity for processing an elemenDigoglog(1/d) +log(1/¢)).

e Time taken to process a query for the sur®i§(1/&?) - 10gVinax-10g(1/93))

An important special case of the sum of positive integersegroblem of maintaining the number
of data items within the window, and is callé&gsic counting(35; 42). Our algorithm solves basic
counting immediately by taking= 1 for every data item.

2.1.1.2 Median

The next aggregate is the approximate median. GwenhW specified by the user, we present

angalgorithmythat,cangreturn an approximate median of th&kget {(v,t) € Rc—w <t <c}. An
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(g,0)-approximate median is defined as follows.

Definition 2.1.2. For0 < € < 1/2and0< d < 1, an (&, d)-approximate median of a totally ordered
set S is a random variable Z such that the rank of Z in S is betyg&& — ¢)|S and (1/2+ ¢)|Y
with probability at leastl — 6. The parametek is called the relative error and is called the failure

probability.
Our algorithm has the following performance guarantees.

e For anyw <W specified by the user at the time of query, the sketch returiis,@)-approximate
median of the seR,. Similar to the sum, the sketch can answer queries abouti@egtamp

window whose right endpoint isand whose width is less than or equalto

e Space used by the sketchQg(1/£2) log(1/5) - 10gNmax: 0), WhereNmay is an upper bound on
the number of elements R, o is the number of bits required to store an input elenterd, &

is the desired relative error, ardds the desired upper bound on the failure probability.
e The expected time taken to process each ite@(leglog(1/d) +log(1/¢)).
e Time taken to process a query for the media®{30g logNmax+ (1/€2) log(1/9)).

Note that the above guarantees for the sum and the mediamlgrevith respect to data that has
been received by the aggregator and is within the timestamgdaw. There may be elements in the
stream that have timestamps within the current window, buemot yet arrived at the aggregator, and

these are not considered as part of the data on which the stira oredian are computed.

2.1.1.3 Union of Sketches

The sketches produced by our sum and median algorithms ca&aasily merged to form new
sketches. This merging step can be performed repeatediyhiararchical manner, using a tree of
aggregators. More precisely, given a sketch of strdaand a sketch for streaB, it is easy to obtain
a sketch of the union of streamdsJ B. A sketch forA (B) consists of a series of random samples
from the input streanf (B). The combined sketch consists of a series of random sarfrplesthe

streamAU B, which can be computed using the individual random samptes A andB. For the sum,
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we show that if each sketch férandB can individually yield an(e, 8)-estimator, then the combined
sketch can yield afie, 8)-estimator for the sum of elements A1JB. A similar result holds for the
median. The space taken for the sketch of the union is no rharethe space needed for the sketch of
a single stream. Thus, when combining sketches, the newtstaies bounded space and the relative
error is controlled. The cost of transmitting these sketadsesmall, and this enables the distributed
computation of aggregates over the union of many data sgeeith low communication and space

overhead.

2.1.2 Related Work

Datar et al. (35) considered basic counting over a sliding window of eleménta data stream
under synchronous arrivals. They presented an algorittainishbased on a data structure called the
exponential histogramwhich can give an approximate answer for basic countind,aso presented
reductions from other aggregates, such as sum{gndrms, to basic counting. For a sliding window
size of maximum siz&V, and ane relative error, the space taken by their algorithm for basignting
is O(i;L log?W), and the time taken to process each eleme@(lsgW) worst case, bu©(1) amor-
tized. Their algorithm for the sum of elements within thalislg window has the space complexity
O(% logW (logW + logm)), and worst case time complexity 6flogW + logm) wherem is an upper
bound on the value of an item. We briefly describe the expaaldnistogram for basic counting. The
exponential histogram divides the relevant window of tlieash (the lastV elements) into buckets of
sizes 12,4, .... There are multiple buckets of each size (the number of hisakea particular size de-
pends on the desired accuracy). The most recent elemerdsoaiged into buckets of size 1, elements
that arrived a little earlier in time are grouped into buskef size 2, and even earlier elements are
grouped into buckets of size 4, and so on. In a synchronoeamstrelements always arrive at in order
of timestamps, and hence a newly arrived element is alwajgreedd into a bucket of size 1. This may
cause the size of the data structure to exceed the desiradhoraxin which case the two least recent
buckets of size 1 are merged to form a single bucket of sizéh.rilerge may cascade, and cause two
buckets of size 2 to merge into one bucket of size 4 and so os.Wldy it is always possible to main-
tain the invariant that given any large buckethere are always many more elements present in buckets

that are more recent thdnthan there are elements Im In addition, all bucket sizes are powers of
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two. In an asynchronous stream, however, the element thiaajtived may have an early timestamp.
This element may fit into an “old” bucket, causing the sizelw bucket to increase, and break the
above described invariant. It seems that the exponensgbdriam is dependent on elements arriving
in order of timestamps. Datat. al.(35) also show the following lower bound. If it is assumed that
all stream elements have distinct timestamps, then, theespamplexity of maintaining an estimate
of the sum within are relative error (either deterministic or randomized) oveyachronous stream
is Q(logU (logW +logU)/¢) bits, whereW is the window size ant is an upper bound on the value
of an element in the stream. Since a synchronous stream ec@bpase of an asynchronous stream,
this lower bound applies to asynchronous streams too. UWhéeassumption of distinct timestamps,
our algorithm has space complexi®(logU (logW + logU)/£?) for returning an estimate within am
relative error with a constant probability. This shows tiegt space cost of asynchrony in this context
is no more thar©(1/¢).

Later, Gibbons and TirthapurdZ) gave an algorithm for basic counting based on a data steictu
called thewavethat used the same space as3B)( but whose time per element@ 1) worst case. Just
like the exponential histogram, the wave also strongly ddpen synchronous arrivals, and it does not
seem easy to adapt it to the asynchronous case.

Recently, Busch and Tirthapura4) have devised a deterministic algorithm for estimatingsine
(and hence, for basic counting) of elements within a slidimgdow of an asynchronous stream. Their
algorithm has a space complexity ©flogU logW (logW + logU ) /¢) for returning an answer with
relative error. When compared with our algorithm for the stimir algorithm has a worse dependence
on logW and a better dependence ofel Further, their algorithm does not apply to the problem of
finding the approximate median.

Arasu and Manku?) present algorithms to approximate frequency counts amuohties over a
sliding window. Since the median is a special case of a dearttiis also provides a solution for
estimating the median, though in the case of synchronousaksir Babcocket al. (10) presented
algorithms for maintaining the variance akdanedians of elements within a sliding window of a data
stream. Feigenbauet al. (38) considered the problem of maintaining the diameter of akpbints
in the sliding window model.

Gibbons and Tirthapurat() introduced the distributed streams model. In this modatheof many
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distributed parties observes a local stream, has limitexkkspace, and communicates with a central
“referee”. When an estimate for the aggregate is requettiedlifferent parties send a “sketch” back to
the referee who computes an aggregate over the union ofé@rst observed by all the parties. 41),
algorithms were presented for estimating the number oindiselements in the union of distributed
streams, and the size of the bitwise-union of distributegbshs. In a later workd@), they considered
estimation of functions over a sliding window on distritditgtreams. However, the algorithms #2)
were designed for the case of synchronous arrivals. PaitBlt6) presented communication efficient
algorithms for computing various aggregates, such as tittamend number of distinct elements in a
sensor network, and considered multi-round distributgdrithms for that purpose.

Guha, Gunopulos, and Koudadh] consider the problem of computing correlations betweeh mu
tiple vectors. The vectors arrive as multiple data streand, within each stream, the elements of a
vector arrive as updates to existing values; the updateassmechronous, and do not necessarily ar-
rive in order of the indexes of elements. Their work focusegh® approximate computation of the
largest eigenvalues of the resulting matrix, using limigpace and in one pass on both synchronous
and asynchronous data streams. They do not consider thextonnsliding windows.

Srivastava and WidonvY@) designed &eartbeaigeneration algorithm to support continuous queries
in a Data Stream Management System, which receives mulbigyechronous data streams. Each
stream is a sequence of tuples of the fdrraluetimestamp. The timestamp is tagged by the source
of the stream. By capturing the skew between steams, andsyimelarony and network transmission
latency of each stream, their algorithm can generate andte@d‘heartbeat” continuously. The algo-
rithm guarantees that there will be no new tuples arrivinth\aitimestamp earlier than the heartbeat.
All tuples with timestamp greater than the current heaitbeabuffered. Once the heartbeat is updated
(advanced), all buffered tuples with timestamp earlientthee new heartbeat are submitted to the query
processor to answer continuous queries. Their algorithquires that the skew between streams, and
the asynchrony and the network transmission latency of ssiem be bounded, while our algorithm
works onanyasynchronous stream. Their work does not consider maintenaf aggregates, as we do
here.

Another sketch that is popular in networking applicatiosishie Bloom filter 1), which summa-

rizes a set of items to support approximate membershipegiedi Bloom filter tackles a different type
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of sketching problem than we do — our sketches are designedpoort aggregate queries on data,
while a Bloom filter supports queries about the existencen@dy of individual elements in the data.
Since keeping information about individual elements isadie expensive, a Bloom filter is a rather
bulky sketch when compared to the sketches we present hbeesphce taken by our sketches do not
depend on the number of elements in the data set (it only dispemthe desired accuracy), while the
size of a Bloom filter is linear in the number of elements.

Much other recent work on data stream algorithms has besgyga in 8; 62). To our knowledge,

our work is the first to consider aggregates over sliding wwmslunder asynchronous arrivals.

2.2 Sum of Positive Integers

We first consider the computation of the sum in the centrdlim@del. The stream received by the
aggregator iR = (dy = (vy,t1),d2 = (Vo,t2),...,dy = (Vn,th)) Where thev;s are positive integers and
tis are the timestamps. Recalbenotes the current time at the aggregator. The goal is totanaia
sketch of the strear® which will provide an answer for the following querfror a user provided w
that is given at the time of the query, what is the sum of thergbions within the current timestamp
window[c— w, c]? The sketch should be quickly updated as new elements aaméeno assumptions
can be made on the order of arrivals.

We assume that the algorithm knoWs an upper bound on the window size. For window size
w < W, let R, denote the set of observations within the current timestaimpow, i.e.Ry = {(v,t) €
Ric—w <t <c}. Givenw, the sketch should return an estimate/gfthe sum of input observations
within Ry. V = 3 r(ut)er,} V

The value oW depends on the application. For example, in a network moengapplication, the
user (network administrator) may never have an interestiémygng about packets that were generated
more than 24 hours ago, in which case settvigo be 24 hours will suffice. Note thail can also be

set to infinity, which essentially means that the sketch sanmes the whole stream.

2.2.1 Intuition

Our algorithm is based omndom samplingThe high level idea is as follows. In order to estimate

the,sumyofintegers,withingthe sliding window, the streanmedats are randomly chosen into a sample
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as they are observed by the aggregator. When an estimatees fas the sum of elements in a given
timestamp window, the algorithm computes the sum of all ele@sin the sample that are within the
timestamp window, multiplies it by the appropriate factmvérse of the sampling probability), and
returns the product as the estimate. The description this tfae recipe for most estimation algorithms
that are based on random sampling. In getting random sagnialiwork for this scenario, we need the
following ideas.

First, suppose the goal is to estimate the cardinality of asiag random sampling. In order to get
a desired accuracy for the estimate, it is enough to sameleléments of the set such that the size of
the resulting sample is “large enough”; what is “large endudepends only on the desired accuracy
(¢ andd), and not on the size of the set itself. The required sizeetdmple can be determined using
Chernoff bounds.

Next, in estimating the sum, different elements in the strdeve to be treated with different
weights during random sampling, otherwise the error imestion could become too large. For exam-
ple, two observationd; = (100t) andd, = (1,t) may both be included in the current sliding timestamp
window, but the sampling should give greater weightifdhan tod,, to maintain a good accuracy for
the estimate. If every element is sampled with the same piiiyait can be verified that the expected
value of the estimate is correct, but the variance of thenadé is too large for our purposes. The
exact differences in the handling of elements with difféneadues is crucial for guaranteeing the error
bounds, and for further details on this we refer the readéredormal description of the algorithm. We
note that many of the technical proofs in this chapter ar@welvto this aspect of handling elements
with varying weights.

Finally, the “correct” probability of sampling cannot beegicted before the query for the sum is
asked. If the answer for the sum is large (estimation of the af a “dense” set), then a small sampling
probability may be enough to return an accurate estimathe lanswer for the sum is small (estimation
of the size of a “sparse” set), then a larger sampling prdibabiay be necessary. Thus, our algorithm
maintains not just one random sample, but many random sapati@robabilitiep =1,1/2,1/4,...
Clearly, the samples at larger probabilities may be toocelaogfit within the workspace, but we show
that in each sample, it suffices to maintain only the mostneeements selected into the sample.

When a query is asked, with high probability, one of thesemaswill provide a good estimate for the
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Algorithm 1: Sumlnit()
Task: Initialize the sketch.

1 fori=0...Mdo
2 L S /* All samples initially empty */
3

ti——1; /* No items have been discarded yet */

sum of all elements within the sliding timestamp window. Ut actual algorithm however, all samples
are not explicitly stored. To improve the element procagsime, each element is stored only in the
lowest probability sample that it is selected into. Wherureggl to answer a query for the sum, the

required sample is reconstructed using all samples at |Ipvedrabilities.

2.2.2 Formal Description of the Algorithm

We assume that the algorithm knows an upper badwng on the value o¥/. The space complexity
of the sketch depends on Nggax. For example, if an upper bound was known on each value
corresponding to the sum of elements at a time instant, ard there no more thahstream elements
with the same timestamp, themfW is a trivial upper bound ow .

Let M = [logVmax|. The algorithm maintainéM + 1) samples, denote®), S;, ..., Su. SampleS
is said to be at “levell. Each sampl& contains the most recent elements selected into the sample,
and when more elements enter the sample, older elementssasedid. Let; be the most recent
timestamp of elements discarded fré&n The purpose of; is to help in determining the range of
timestamps that are still present in the sample. The maximumber of elements in each sam@és
a = (12/£%)In(8/5).

The algorithm is described in algorithn®&imInit which describes the initialization steps for the
sketch,SumProcessvhich describes the algorithm for updating the sketch ugmeiving a new ele-

ment, andSumQuerywhich describes the steps for answering a query for the sum.

2.2.3 Correctness Proof

Let X denote the result returned BumQuery(wvhen a query is asked for the sum of elements

within the sliding timestamp windo\ye — w, ¢]. We show thak is an(€, d)-estimate o¥.
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Algorithm 2 : SumProcessgE(v,t))
Input: vis the value of the element, and is a positive integ& the timestamp
Task: Insertd into the sketch.

1 if (t <c—W) thenreturn ; /* Discard d since it is outside the largest
timestamp window, and a future query will never involve d. */

2 Let/=min{il0<i<M,v/2' <1} ; /* { is an integer. */

3 LetPir =1 =v/2 and Pfr = 0] = 1—v/2';

4 if r =1thenk«— min{Z,M — ¢+ 1}, whereZ is the number of flips of a fair coin till the first tail;

5 if r=0thenk «+ 0O;

6 Insert(v,t) into S k_1;

7 if |Syk-1| > o then

8 Discard the element with the lowest timestamSink_1;

9 Lett’ be the timestamp of the discarded element;

1 trike1 — max{teii—1,t'};

o

Algorithm 3: SumQuerywy)
Input: w < W is the width of the window
Output: An estimate of the sum of all stream elements with timestamphe rangec — w, c|

1 Let?" € [0,M] be the smallest integer, such that for@&l j <M, tj <c—w;
2 if no such?’ existsthen ¢/ «+ M +1;

3 if #/ <M then

4 fori=/¢"toMdo nj z(mt)es_tzc,wmaﬂ%,l);

5 | return 2" M, n;;

6 if / =M+ 1then return ; /* Algorithm Fails */

Definition 2.2.1. For each element & (v,t) € Ry, for each level =0,1,2,...,M, random variable

xi(d) is defined as follows. Letbe the smallest level such thata¥ < 1.
e For0<i<y,x(d)=v/2.
e X, (d) =1 with probability v/2¥, and x,(d) = 0 with probability 1 —v/2V.

e For y<i <M, x(d) is defined inductively. Ifix;(d) = 0then, x(d) = 0. If xi_1(d) = 1, then
x;(d) = 1 with probability 3 and x(d) = 0 with probability 1/2.

Definition 2.2.2. Fori =0,...,M, T is the set constructed by the following probabilistic prsseStart
with T < @. For each element & (v,t) € Ry, if xi(d) # 0, then insert(x(d),t) into T;.

Note thatTjis.defined.for, the purpose of the proof only, but The are not stored by the algorithm.
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Definition 2.2.3. Fori =0,...,M, define X= 3 (et U.
Lemma 2.2.1.1fd = (v,t) then Ex(d)] = v/2

Proof. Lety be defined as in DefinitioR.2.1, i.e. y is the smallest level such thgt < 1. For 0<i <y
Ex(d)] = v/2, sincex;(d) is a constant. Foy <i <M, x(d) is a 0-1 random variable. We use
proof by induction oni to show thatE[x;(d)] = Prix(d) = 1] = v/2". The base case= y is true
since Pfx,(d) = 1] = v/2¥ by definition. Assume that far> y, Prix(d) = 1] = v/2'. Again, using
Definition 2.2.1, Pr{x; 1 1(d) = 1] = (1/2) - Pr{x;(d) = 1] = v/2'+1, thus proving the inductive step.[]

Lemma2.2.2.Fori=0,...,M, E[X] =V/2

Proof. The definitions ofX; andx;(d) yield the following.

(ut)eT d=(vt)eRy

Using linearity of expectation and Lemr2a2.1, we get:
EXl= Y E(d)=

O

Lemma 2.2.3.When asked for an estimate for VSiimQuery{) does not fail in Step, then it returns

2" X, for value/ selected in Stef.

Proof. ConsiderSumQuery(wvhen asked for an estimate of the sum of elemeni,in

Note that the level chosen by the algorithf, satisfies the following condition. For all levels
¢ <i <M, the most recent timestamp of the discarded elements {pedtan the variable; in the
algorithm) is less than—w. Thus, for alli,#’ <i < M, no element which is selected infpand has a
timestamp at least— w is discarded.

Next, we argue that the contribution of each elengnt (v,t) € R, to the value returned by the
algorithm is Z'xg/(d). Supposexy(d) = 0. We refer to the algorithm for processing an element in

SumProcess(d)The arrival of elemend = (v,t) causes an insertion @§,t) into S for leveli < ¢’. Note
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that in computing the estimat&umQuery(wpnly uses elements from levelsor greater, element
will not contribute to the estimate returned by the algonith

Supposexy(d) > 0. Again, referring toSumProcess(d)we note that the arrival o causes an
insertion of(v,t) into aleveli > ¢'. In answering a query for the surB{mQuery(w) all elements with
timestamp at least—w which are inserted into levelsor greater are considered, and their contribution
to the estimate is exactly'%,(d). To see this, suppose> 2. Then,x,(d) = v/2¢. From Step in
SumQuery(w)the contribution ofv to the estimate is‘Qv/2") = 2¢'x,(d). Supposer < 2°. Then
Xp(d) should be 1, since it is a 0-1 random variable. In such a ces®, $tepd in SumQuery(w)the
contribution ofd to the estimate is’2= 2!'x,(d). Thus, for eachd = (v,t) € Ry, the contribution to

the returned estimate i$'%(d). The total returned estimate is exactiyXz. O

Next, we will show thaX, is a good estimate fdr. The following definition captures the notion

of whether or not different samples yield good estimate¥/for

Definition 2.2.4. For i = 0,...,M, random variable Xis said to be “good” if (1 — &)V < X2 <

(1+¢)V, and “bad” otherwise. Define event B be true if Xis bad, and false otherwise.
Lemma 2.2.4.If |R,| < a, thenSumQueryy) returns the exact answer for the sum.

Proof. Note that each element R, was selected int§ when it was processed. Since thelements
with the most recent timestamps are store@ynit must be true thaR, C S. SumQuerwill retrieve

all of R, from & and return the exact sum Bj,. O

Because of the above lemma, in the rest of the proof, we asfgphe- a. Since each element in

the input stream is at least 1, this implies tWat a.
Definition 2.2.5. Let¢* > 0 be an integer such that[¥,| < a/2 and EX;] > a /4.
Lemma 2.2.5. Level/* is uniquely defined and exists for every input stream R.

Proof. From Lemma2.2.2 we haveE[X] =V /2. SinceV > a, E[Xo] > a. By the definition of
M = [logVmax|, it must be true tha¥ < 2M for any input strean?, so thatE[Xy] < 1. Since for every
increment ini, E[X] decreases by a factor of 2, there must be a unique level'0< M such that

E[Xe) < a/2 andE[Xe.] > a/4. O
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For the next lemmas, we use a version of Hoeffding bounds fEmmmidt, Siegel and Srini-
vasan 70) (Section 2.1) which is restated here for convenienceyiLeb, ...,

yn be independent 0-1 random variables witfyPe 1] = pi. LetY =y1+Y2+...+Yn, and lety = E[Y].

Lemma 2.2.6. Hoeffding's Bound (restated from 70)):
(1) If 0< 5 < 1, thenPrY > p(1+ )] < e HO*/3,

(2) If 5 > 1, thenPrlY > p(1+3)] < e Ho/3,

(3) If0 < & < 1, thenPrY < p(1— )] < e Ho°/2,

The next lemma helps in the proof of Lemi22.8
Lemma 2.2.7.1f 0 < a<  and k> 0, then 42 < 2

Proof. It is clear by induction that'2— 1 > k. Since 0< a < 4, we can further hava(®~V) < ak <
(1/2)*. Thereforea®) < 2.

The next lemma shows that it is highly unlikely thtis true for any? such that 0< ¢ < ¢*.

Lemma 2.2.8. For integer/ such thatd < ¢ < ¢*,

0

PI’[Xg ¢ (1—£,1+8)E[X€H < m
Proof.
Xg = z Xg(d)
d=(Vt)€Ry

From Definition2.2.1, it follows that for somel € Ry, x/(d) is a constant and for othexg(d) is a
0-1 random variable. Thu¥, is the sum of a few constants and a few random variablesX/letc+Y
wherec denotes the sum of al/(d)’s that are constants, antlis the sum of the(d)’s that are 0-1
random variables. Clearly, since the different elementhefstream are sampled using independent
random bits, the random variablegd) for differentd € Ry, are all independent. Thisis the sum of
independent 0-1 random variables. |gt= E[Y].

By linearity of expectation, we have

E[X] = c+ iy (2.1)
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By the definition of¢*, E[X,s] > a /4. SinceE[X;| = \2—’, (from Lemma2.2.2). Using Equatior2.1,

we get the following inequality that will be used in furtheopfs.
c+py > 2" (a/4) (2.2)
We first consider RK, > (1+ €)E[X/]]

PriX, > (1+&)E[X]] = Prc+Y > (1+¢)(c+ Ly)]

g(c+ Lly))]
Ly
= PiY > (140,

= PHY > py(1+

Whered' = g(c+ py) /L.
We consider two cases her@: < 1 andd’ > 1.

Case I: &' < 1. Using Lemma2.2.6and the fac{c+ pv)/py > 1, we have

£2(ctpy)?

PIY > iy (1+0)] < e Boe

< e PCm)/3 _ g2 (/43
(zf*fl

5 ) &/8
< s = o0

Where we have used = (12/£2)In(8/5) andd < 1, Equatior2.2and Lemma2.2.7.

Case Il: &’ > 1. Using Lemma2.2.6 we have:

PIY > iy (14 8)] < e WO/B =g elctm)/3

2 0in(8/8)/e _ 1O \1/e720
<e [(8) ]

where we have used = (12/£2)In(8/5) andd < 1, Equatior2.2and Lemma2.2.7.
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From Case | and Case I, we have

PriX, < (14+€)E[X/]] < 26£_/_8£ (2.3)

Next we consider BX; < (1—¢&)E[X/]]
PriX, < (1—&)E[X/]] = Pric+Y < (1—¢&)(c+ py)] = PrY < py(1— )]

Whered' = g(c+ py) /by
Using Lemma2.2.6and the fac{uy +c¢)/uy > 1,

22 C2
PHY < py(1— )] < & W3%/2 — o= T8 < g€l r0)2

Using Equatior2.2and Lemma.2.7,

_ g2 2 6 3 2@*—2 6 —
e T < [(9)]® V< () V< 5y

Thus, we have

PiX: < (L £)E[X] < o1 24)

Combining Equation2.3and2.4, for 0 < ¢ < ¢*, we get

PriX, & (1—&,14 &)E[X/]] = PriX; > (1+ €)E[X/]] + PriX, < (1 —)E[X/]] < 25/5*—/_46

Lemma 2.2.9.

.iPI’[Bi] <0/2

Proof. By definition of B;, Pi{Bi] = Pii2'X; & (1—¢&,1+&)V] = Pr[X ¢ (1—€,1+€)E[X]]

Using Lemma2.2.8

E* E* 6 6 Z* 1
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Recall that the algorithm uses levéin SumQuery(wjo answer the query for the sum.

Lemma 2.2.10.
Pri¢’ > ("] < 6/8

Proof. Let 3 denote the number of elementsijf that were inserted int§. By SumQuery(w)we
know thatB,_; > a since otherwise the algorithm would have chosen Iévell instead. Note that for
each level =0...M, |Ti| > 3, since an insertion of an elementRy into § always causes an insertion
into T; (but not necessarily vice versa). Thiify_1| > a. Note that from Definitior2.2.2 it follows

that for all 0< iy < iy <M, [Ti,| > |Ti,|. Thus, if¢’ — 1> ¢*, then|Ty| > |Tp_1| > a.
Pt > ¢*] = Pr{¢’ — 1> ¢*] < PH|Ti+| > q] (2.5)

Since each element ifj contributes at least one &, we haveX; > |Ti|. Combining this with
Equation2.5, we get:

Pri¢’ > ¢*] < Pr{Xp > a] (2.6)

As in the proof of Lemm&.2.8 we denoteX;« = c+Y, wherec is a constant and is the sum of

independent 0-1 random variables. |gt= E[Y]. SinceE[X;<] < a/2, we have

PriXe>a] < PriXpe > 2E[X]]

= Prc+Y > 2(c+ py)]

= PrY >y (1+ C+—“Y)]

Using Lemma2.2.6
PHY > py (1+ C:;_“Y)] < e W 3/3 _ g(ctmy)/3
Y

Whered’ = (c+ py)/py > 1.
Since,E[Xx] = c+ uy > a /4, we have
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In(8/5)
e_(c+uY)/3 <e &2 = (§)1/52 < é

8 8

O

Theorem 2.2.1. The result of the algorithm, X is an (g, d)-estimate for V, the sum of all elements in

the timestamp windoye — w, c|.

Proof. Let f denote the probability that the algorithm fails to returnemtimate that is within aa
relative error oV. Note that one way the algorithm can fail is by running outesflls, i.e. at leveM

the sample still has too many elements; as we show, this islidely event.

f = Pl >M] +Pr{LMJ(£’ —i)ABi]
i=0

IN

Pri¢’ > M] +§0Pr[(£’ =i)ABj]

Pri¢’ > M] + iPr{Bi]—i- 3 Pri¢ =i]
= i=0+1

IN

— P> +_iPr[Bi]

_ 8.8
8 2

< 0

where we have used Lemm2<£.9and2.2.10 O

2.2.4 Complexity

Lemma 2.2.11. Space ComplexityThe total space taken by the sketch for the sum is
O((1/€2?) (log(1/8))(l0gVmax)0), Where Vhaxis an upper bound on the value of the sumovis the
space taken to store an input eleméwt), ¢ is the desired relative error, and is the desired upper

bound on the failure probability.

Proof. The algorithm maintain! = [logVmax] samples, each of which has updae= (12/£2)In(8/0)

elements. Each element in the sample is a paiy, which can be stored using bits. The product of
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the number of samples, the number of elements per sampléhaspace per element yields the above

space complexity. O

Lemma 2.2.12. Time Complexity:The worst case time complexity for processing an elemengwit)
by SumProcessl] is O(loga) = O(loglog(1/d) +1og(1/¢)). The worst case time taken to answer a
query for the sum bumQueryy) is O(Ma) = O((1/€?) - logVmax- 109(1/d)).

Proof. The elements in each sample can be stored using a heap thd¢iedaccording to the times-
tamps of the elements. The heap supports two operatiomss€etjon and (b)delete-min, both in time
O(loga), since the maximum size of each sampleis- (12/£2)In(8/0).

ConsiderSumProcess(d)If input elementd = (v;t) is outside the window (Step), then it takes
constant time to discard it. Otherwise, the time taken teg@sed consists of three parts. The first part
is to compute the value dfin Step2, which takes constant time. The second part is to find thesvalu
of k in Step4 of SumProcess(d)We assume that it takes constant time to generate an exjailyen
distributed random numbés where Pk = i] = l/2i, i=12,---. Thus, Step! also takes constant
time. The third part is the actual insertion irsa.x_; in Step6, and (possibly) discarding the oldest
element ofS, _1 in Step7, which takesO(loga) time. Summing these, we find that the worst case
time to processl is O(loga).

The time taken to answer a query for the sum consists of twis.pahe first part is to find the value
of £ in SumQuery(w)which can be done i®(M) time. The second part is to find all elements with
timestamps within the query window in sami@e /¢ <i < M. This part takes tim©(Ma). Summing

these two parts, the worst case time taken for answeringrg @ (Ma). O

2.2.5 Trade off between Processing time and Query time.

By spending more time during processing an element, it isiptesto improve the query time for
the sum as follows. In algorithrBumProcess(d)nstead of inserting the element into only one level
(¢+k—1) in Step6, it can be inserted into every level starting from O¢lll-k— 1) (Figure 2 of {5)).
This way, when processing a query for the sunSiimQuerywe need to consider only a single level
¢' (Figure 3 of {5)), rather than all levels frord till M. The space complexity of the algorithm would

remain the same as before, but the time complexity would ginas follows. Worst case time for
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processing an element is nd®((logVmax) (loglog 1/6 +log1/¢€)), and time taken to answer a query
for the sum isO(loglogVmax+10g(1/8)/€2). The time for answering the query has decreased, while
the time for processing an element has increased. In mo#tafigns, since queries are likely to be
much less frequent than element arrivals, the algorithnh féister element processing time may be
preferred (i.e. algorithmSumProcesandSumQuery,

A more flexible trade off between processing time and queng ttan be obtained as follows. The
user can specify a levél, 0 <L < M, as a parameter tBumProcesand SumQuery In SumProcess
if ({+k—1) <L, then insert the element into only one leyék-k — 1); otherwise, insert the element
into levelsL,L +1,...,¢+k— 1. SumQuerys modified as follows. As before, levélc [0,M] is the
smallest integer such that for gll ¢/ < j <M, tj <c—w. If ¢/ <L, then the query is answered using
the union of all elements in levels+ 1,/ +2, ..., L that belong within the window. On the other hand,
if // > L, then the query is answered using only the elements in l&vsince the relevant elements in
later levels are also present in levél

With this modification, the space complexity remains the esas before, but the time complexity
changes as follows. Worst case time for processing an elegrow
O(([logVmax] —L)(loglog(1/d) +log(1/¢))), and worst case time for answering a query for the sum
is max(O (log([logVmax] — L) + (log(1/3))/€?) ,0(L- (log(1/3))/€?)). The smaller the value df
is, the more time spent on processing an element, but theileesspent on answering a query, and
vice versa. Clearly if we choode= 0, the algorithm for processing an element is the one in Eigur
of (75), i.e., the element will be inserted into every level thasiselected into, and the algorithm to
answer a query for the sum is the one in Figure 37&);(if we chooseL = M — 1, it is SumProcess
in Section2.2.2which process an element, and the algorithm for answeringeaygfor the sum is

SumQueryn Section2.2.2

2.3 Computing the Median

In this section, given a maximum window si#é we design a sketch such that foralk W, the
sketch can return afe, d)-approximate median d®,, whose values are chosen from a totally ordered
universe.

The algorithm. for.the.median is based on random samplingresnany earlier algorithms for
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medians and quantiles over data streaf® 44). Roughly speaking, the median of a random sample
of a stream, where the stream is sampled at a sufficiently largbability, is an approximate median
of all elements in the stream. What is a “sufficiently largedimbility depends on the size of the set
on which the median is being computed, and the desired axycusince the window sizer is known
only at query time, there is no single sampling probabilitgttsuffices for all queries. Similar to the
algorithm for the sum, the idea in the algorithm for the mad&to maintain many random samples
at different probabilities, starting with a probability dfand successively decreasing by a factor of
1/2. The key differences between the algorithms for the sumnaedian are summarized below —
though these algorithms are similar from a high level, thdifferences make the correctness proofs

quite different.

1. In the algorithm for the median, the value of the data it@®sdhot affect the sampling probabil-
ity. A uniform random sample suffices for the median, whileoa-uniform sample is necessary

for the sum.

2. Another simplification in the sketch for the median is thath element is explicitly stored in
every level that it is sampled into. In the case of the meditorjing an element explicitly in each
level is not expensive, since on average, each element iglsdnmto only two levels. Storing
the element in this way improves the cost of a query for the@pmate median, while it does
not significantly alter the cost of processing an elementhéncase of the sum, however, storing
the element explicitly in each level it is sampled may be espe&, since an element with a high

value will be sampled into many levels.

2.3.1 Formal Description of the Algorithm

We assume that the algorithm knows an upper bawng on the number of elements R,. For
example, if there were no more thérelements with the same timestamp then setipgy= fW will
do. The space complexity of the sketch depends ohjgg LetN = |Ry|, M = [10gNmax]-

The algorithm for the median maintai(®! + 1) sampless, Sy, . .., Sy and the correspondings.
The maximum number of elements in each sanfpiea = (96/£2)In(8/5). Initially, eachS is empty

andt; is set to be—1, as described iSumlnit The algorithm for updating the sketch upon receiving
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Algorithm 4 : MedianProcess&(v,t))
Input: vis the value of the element, and is a positive integés;the timestamp
Task: Insertd into the sketch.

if (t <c—W) thenreturn;
Insert(v,t) into &;
if |S| > o then
Discard the element with the earliest timestam@jnsayt’;
L Updatety < max{to,t'};

Seti «+ 1;

while (v,t) was inserted into level — 1) and i< M do

Insert(v,t) into § with probability 1/2;

if |S|> a then

10 Discard the element with the earliest timestamfirsayt’;
11 L Updatet; — max{t;,t'};

12 Increment;

a A W N P

© 00 N O

Algorithm 5: MedianQuery)
Input: w < W is the width of the window
Output: An estimate of the median of all stream elements with tieregts in the rangg — w, ¢]

1 Let/ be the smallest integer9 ¢ < M such thaty < c—w;

2 if ¢ existsthen return the median of the s€{v,t) € Syt > c—w};

3 elsel/ —M+1;

4 if ¢/ =M+ 1thenreturn ; /* Algorithm fails */

a new element is described tedianProcessandMedianQueryreturns an estimate of the median of
Ry when receiving a query.
2.3.2 Correctness Proof

We now show that the result dMedianQuery(w)s an (e, d)-approximate median of the s&},.

Definition 2.3.1. For each element & (v,t) € Ry, for each level =0,1,2,...,M, random variable

x;(d) is defined inductively as follows.
e Xp(d)=1

e Fori>0,ifx_1(d) =1, then x(d) = 1 with probability  and x(d) = 0 with probability 1/2. If
Xi—1(d) =0, then x(d) = 0.
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Definition 2.3.2. For i =0,1,...,M, T is the set constructed by the following probabilistic pisge
Start with T+« ¢. For each element & (v,t) € Ry, if xj(d) = 1, then insert(v,t) into T;. Let X = [Ti|.

Lemma 2.3.1. Given any d= (v;t), for each i,0 <i <M, E[x(d)] = 1/2', E[X] = N/2".

Proof. We use proof by induction onto show thatE [x;(d)] = Prx(d) = 1] = 1/2'. The base case
i = 0is true by Definitior2.3.1 Assume for 0< i < M, Piix(d) = 1] = 1/2'. Using Definition2.3.1,
Prxi.1(d) = 1] = 1/2-Prx(d) = 1] = 1/2'*1, proving the inductive step.

Now we showE[X] = N/2'. Note thatiR,| = N. The Definitions2.3.1and 2.3.2yield X, = |Ti| =

S der, Xi(d). Using linearity of expectation, we gB{X| = |R,|/2' = N/2.. O
Fori =0...M, let y denote the median of s&t

Lemma 2.3.2. When asked for an estimate for the mediahédianQueryy) does not fail in Steg,
then it returnsy, for value?’ selected in Step. Further, if|R,| < a, thenMedianQueryy) returns the

exact median of R

Proof. ConsiderMedianQuery(w) Note that the level chosen by the algorithéh, satisfies the con-
dition that the timestamp of the most recently discardechele from?’ is less tharc —w. Thus no
element which has been selected iBtoand has a timestamp at least w has been discarded. Next
considerMedianProcess(d) For any arriving elemerd = (v,t) € Ry, if x»(d) = 1, there will be an
insertion intoSy and by Definition2.3.2 there will also be an insertion inf. If x»(d) = 0, the arrival
of d will not cause an insertion into eith&: or into T. Thus, the set of all elements 8 that have
timestamps at least— w is exactly the sef,. By returning the median of this set, the algorithm is
returningyy.

SupposeR,| < a. Note that each element R, was selected int& when it was processed.
Since thea elements with the most recent timestamps are storéd, iit must be true thaR, C .

MedianQuerywill retrieve all of R, from & and return the exact median Rf,. O

Because of the above lemma, in the rest of the proof, we asthati®,| > a.

Definition 2.3.3. For i = 0...M, let r; denote the rank off in R,. Define event Bto be true if if
ri & [(1/2—€)N,(1/2+ )N], and false otherwise. Define eventt6 be true if(1—&)N/2' < X <

(A+&)N/2 mandfalse.othenwise. Lét > 0 be an integer such that /4 < E[X,] < a/2.
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Lemma 2.3.3. Level/* is uniquely defined and exists for every input stream R.

Proof. From Lemma2.3.1, we haveE([X]] = N/2'. SinceN > a, E[Xo] > a. By the definition of
M = [logNmax|, it must be true thall < 2M for any input streani, so thatE[Xy] < 1. Since for every
increment ini, E[X;] decreases by a factor of 2, there must be a unique leveV0< M such that

EX+] < a/2andE[X;+] > a/4. O

The following lemma shows that for levels that are less thagaal to/*, the median of the random
sample is very likely to be close (in rank) to the actual med&R,. The proof uses conditional
probabilities. We show that for levels that are less thamoaéto/*, the number of elements selected
into the the level is close to its expectation with high piuiliy. Under this condition, we show the

median of the sample is close to the actual median with highatility.

Lemma 2.3.4.For0< /¢ < /*,

Pr[Bg] < m
Proof.
PriB] = PHG;ABy]+PHG,AB]
< PIB/G/] PG| + PG/ (2.7)
< PIB(|G/] + PG/ (2.8)

Using Lemmag®.3.5and2.3.6in Equation2.8, we get:

55/8 5
S —(+2 < 20142

Pf‘[Bg] <

Lemma 2.3.5.For0< /¢ < /%,

PG < g o2

Proof. Let u, = E[X/] = N/2
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PG/ = PiX, <(1—&)u VX > (1+¢)u

IN

PriX, < (1—&)pe] +PriXe > (14 &) ]

SinceE[X] = N/2' (from Lemma2.3.]) andE[X,] > a /4, we havey, > (a/4)2" ~'. By Defini-
tion 2.1.2 we know 0< € < 1/2. Using Lemm&.2.6

PG| < PX < (1— )] +PriXe > (1+ &)y

< g Mg 2 | g e?/3
< gleta2 ) | (—eta 223
- 5 2@*7/.42.3 5 2@*—£+3
= (g) + (g)
Oy —t+3 0/4 o
= 2(§) = 20 —+3 — 2 —+5
We have used Lemna2.7in the last inequality. O
Lemma 2.3.6.For0< /¢ < /%,
o
PriB/|G/] < 55—z

Proof.

Pr{By|G,] = Prlry < (1/2— &)N|G(] +Pr[r, > (1/2+ €)N|G/]

The proof will consist of two parts, Equatio@s9and2.10

Priry < (1/2—&)N|G/] < %/;1“ (2.9)
Prre > (1/24 €)N|G/] < %/;1“ (2.10)

Proof of Equation 2.9: Let L = {d € RyJrank ofd in Ry < (1/2—¢)N}, Y = Sy X(d). By

Lemma2.3.1 we haveE[Y] = (1—2¢)N/2*1 Sincer, < (1/2— )N, which means that at least the
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smaller half elements i were selected from the skt combining the fack; > (1— s)N/Z", we have
the following,

Prire < (z —€)N|G/ = Pr(r, < (% —&)N)AG/]/PrG]

< P> (1-£) 0 ]/PIG)

= PAY > (1+&)E[Y]]/ PG|,

Whered' = /(1 2¢) and P{G,] > 1—5/(8-2" ~+2)
Case 1:if 0 < &’ < 1, then

é ol 142 5)213*4+2< 0/8

8)71725 < (= < vz

PrY > (14 &)E]Y]] < e EYIO?/3 .

Case 2:if & > 1, then

_ / O -2 O o142 0/8
/ E[Y]d'/3 2=t
PrY > (14 8)E[Y]] < e B9/ <(g) 7 <(g) < S

Thus,

PY > (14 8)E[Y]]/PrG/] < 074

In both Cases 1 and 2, we have used the Ef&y] = N/2 > (a/4)2" ' in addition to Lemm&.2.6
and Lemm&.2.7. From Cases 1 and 2, Equati@r®is proved. Equatio2.10can be similarly proved.
From Equation®.9and2.10, we get:

0 o
20 —(+4 — D —(+3

Pf‘[Bg|Gg] <2

Lemma 2.3.7.

N 1

.ipl’[Bi] <

www.manharaa.com




36

Proof. The proof directly follows from Lemma.3.4

542 1

iin{Bi] < ,lgﬁ =0 i; o5 < 62% =g

Recall that level’ in MedianQuery(w)s used to answer the query for the median.

Lemma 2.3.8.

Pi¢ > 0*] <

[oc] 7]

Proof. If ¢ > ¢*, it follows that|T;<| = X~ > a, else the algorithm would have stopped at a level less
than or equal t@*. Thus, Pi¢’ > ¢*] < Pi{X,- > a]. LetY = Xp. SinceY = 4cr, X+ (d), wherex,- (d)

is 0-1 random variableg[Y] < a /2. Using Lemm&2.2.6 we have

Pri¢' > ] < PrY > a] <PAY > 2E[Y]]

< e EMB _ga/12 (g)s%

N
[ec) Y

We have used the fa&lY] > a/4. O
Theorem 2.3.1. The result of algorithnMedianQuery§) is an (g, 8)-approximate median of R

Proof. Let f denote the probability that the algorithm fails to return(and)-approximate median of

Ry. Using Lemmag.3.7and2.3.8and a similar argument to the proof of Theor@r.1 we get:
M
f = Pf¢’>M]+Pil (¢ =i)AB
i=0
Pri¢’ > "]+ 3 PriBi] < ° + °
2" \a "2

< 0

IN
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2.3.3 Complexity

Lemma 2.3.9. Space ComplexityThe total space taken by the sketch for the median is
0O((1/€?)109(1/d) - logNmax- @), where Nhaxis an upper bound on the number of elements within R
o is the space taken to store an input elemirtt), € is the desired relative error, and is the desired

upper bound on the failure probability.

Proof. The algorithm maintain®! = [logNmax] samples, each of which has updae= (96/£2)In(8/5)
elements. Each element in the sample is a paiy, which can be stored using bits. The product of
the number of samples, the number of elements per sampl¢hasgace per element yields the above

space complexity. O

Lemma 2.3.10. Time Complexity:The expected time taken for handling an elenteny is
O(loglog(1/9d) +log(1/¢€)). The time taken to answer a query for the median is

O(loglogNmax+ (1/£2)10g(1/3)).

Proof. The proof is similar to that of Lemm2.2.12 All elements in the same level can be stored in
a heap. Each incoming element is sampled into an expectetiacwmumber of levels, where the cost
of insertion into each level, plus the cost of handling therfiew isO(loga). For answering a query
for the median, the appropriate level can be found in g logNmax) through a binary search, and
finding the median of the sample at the appropriate levekt@e ) using the linear time algorithm for

finding a median. So the total cost for answering a query fentiedian i<O(loglogNmax+ o). O

2.4 Union of Sketches

In a distributed system, there could be multiple aggregatsich of which is observing a different
local stream. It may be necessary to compute aggregatest gushany individual stream, but on the
union of the data in all streams. We now consider the comiputaf aggregates over recent elements
of the union of distributed data streams.

A simple solution to the above problem would be to send adlastrs directly to an aggregator (or
thesink which can then compute an aggregate on the entire dataeelcéilowever, such an approach
would be extremely resource-intensive with respect to canioation complexity and energy, since

each,datasitem,of,.each,stream has to traverse a path fromuheedo the destination.
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Sink Union sketch Sk¢

/O_Q\ Carol
S SKV$'\SKB
,Bo

/" Alice °

b
Input .
A streams B

Figure 2.1 Left: a spanning tree which connects aggregatilbsflow of infor-
mation towards a sink; Right: an aggregator merges the lségtof
two aggregators

A much more efficient approach is for each node to compute dl space sketch of its local
stream, and communicate the sketch to the sink. The sinksmthe sketches to estimate the aggregate
over the union of all data streams. Since the sketches arb smaller than the streams themselves,
this approach has much smaller communication complexén the simple approach. In sensor data
processing, there have been successful proposals (forpbxaMaddenet al. (56)) to combine such
sketches in a hierarchical fashion, where sketches areinechiop a spanning tree which is rooted at
the sink node (see Figugl).

Each aggregator sends its sketch to its parent. The pardatraoeives sketches from all its chil-
dren, combines them into a new sketch and then sends the mdehgk its own parent. In this way,
sketches propagate and get combined at intermediate leiviie tree until they reach the sink. The
sink combines the received sketches from its children andymes a final sketch for the union of all
the (local) streams received by all aggregators. We con#igesimple case of three aggregators, Alice
(child), Bob (child), and Carol (parent) (see Fig@d). The scenario can be generalized for an arbi-
trary number of aggregators, or aggregators organized iararbhy. Suppose Alice and Bob receive
respective (asynchronous) streafandB, producing sketcheSK* and SI€, respectively, each for a
maximum window siz&V. Alice and Bob transmit their sketches to Carol, who combBié andSKE
to produce a sketcBK for the unionAU B. Though Carol never sees streafnsr B, she can usk
to answer aggregate queries for any timestamp window ofwidt W over the data setU B.

The algorithm for the union is formally described imion(,-). Given sketcheSK* and SIe of
streamsA and B respectively, the algorithm outpuBK, a sketch ofAUB, which can be used to
answer queries for the approximate sum or median of all eiesnwithin a sliding timestamp win-

dow.overAlB. In_Union(), for 0 <i < M, let 3“ denote the level sample of Alice, ancliA de-
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Algorithm 6 : Union(SK*, SI€)

Input: SK' =< §,t8, M1, ..., ).t >, a sketch of Alice’s local streary
S =<8, tB ... F,,t{} >, a sketch of Bob’s local streaB

Output: SK, a sketch o = AUB

fori=0...Mdo

if US| < o then

§—Fus;

t€ « max{tA t8};

A W N P

else
¢ is the set ofr most recent elements BU P,
Lett be the most recent timestamp(it§* U ) — §°);
ti — max{t,tA tB};

o N o O

note the most recent timestamp of a discarded element 8mThe sketch computed by Alice
is the vectorSK* = (3,8, S\ 11, ..., S, th)-  Similarly, the sketch computed by Bob is the vector
S =($,t8,$,t8,... F,t8).

The high level algorithm for the union is the same whetherpgregate required is the sum or the
median. The only difference is that in case of the sum, tharpaterM = l0gVmax WhereVmaxis an
upper bound on the sum of observations within the windowsscell streams. Note that the sketch
of each local stream must also Uge= logVmax WhereVinay is defined above. In case of the median,
M = log Nmax WhereNmax is an upper bound on the number of elements within the timgstaindow
across all streams. Note that the sketch of each local stne@shalso us&! = logNmax WhereNmaxis
defined above. Of course, the algorithms for sketching tbal Istreams are different for the sum and
for the median, though the algorithms for the union of skescare the same. The initialization i
and the algorithm for answering the query (sum or mediam)guSK are the same as for the single
stream case.

The sketches can be combined hierarchically. For exampgoseD andE were two other local
streams, an@K was the result oblnion(SI, SIE). ThenSK andSK can be combined usindnion()
to yield a sketch oAUBUDUE. A key property required for the above hierarchical unionvtark
is that the combination of sketcheslésslessandcompact A sketch is said to beompactf SK, the
sketch resulting from the Union operation, has the samelljsapper bound on the size as &* and

SIE. If a sketch is compact, then the size of the sketch resuiitorg the combination of many sketches
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is bounded, and does not increase beyond a threshold na imaitenany sketches are combined. The
sketch is said to bsslessf the guarantee provided ¥ (for example (g, 8)-accuracy for the sum

or the median) on datAU B is the same as the guarantees provided by ske®KeandSI on data
setsA andB respectively. In this way, the quality and size of the sketcbach level of the tree will be
insensitive to the structural properties of the tree, sichsadegree and depth. We now argue that the

sketches developed for the sum and the median are compact.

Compactness of Sketches. The sketch resulting from the uni@¥ is < §,t5, S,t5,..., S, t5 >.
Since the upper bound on the number of elemen&irs® andS" are alla, the bounds on the sizes
of SI, SK* andSI are identical. Thus, the sketch for the sum is compact anc Isasce complex-
ity as described in Lemm2.2.11 Similarly, the sketch for the median is compact, and hasaaesp

complexity as described in Lemn2a3.9

Losslessness of SketchesWe will now show that the sketch resulting frobmion() also pre-
serves the same accuracy as its constituent sketches,rtibefdata stream constructed by the union
of the individual streams. Le3K),,and S, respectively denote the sketches foandB for the
sum, for a maximum window si2é/, relative errore and failure probabilityd. Let SK}.,andSK
respectively denote the sketches foandB for the (g, d)-approximate median, for a maximum win-
dow sizeW > w. Let SK;,,, denote the result oinion(SK),,, SK,) and SK _, denote the result of
Union(SK} .4 SK o0)-

Let SK\;2 be the sketch resulting from applying Algoritht®umProcesédescribed in SectioB.2)
for over all elements of the streafr B. In generating the sketch éfU B, we do not assume anything
about the order of arrival of elements AU B; the resulting sketch will not depend on this order.
We assume that the random choices that are made by algdsitilnfProcess processing an element
are identical whether the element is processed as a parteaihsf U B or as a part of the individual
streamsA or B. The sketch for the sum assumes a maximum window \&izeelative errore and
failure probabilityd. Similarly, IetSI{j}gg be the sketch resulting by applying algoritiviedianProcess
(described in Sectiof.3) over all elements oAUB. Again, the elements of streafiU B can arrive
in any order, and this order does not affect the final sketefeigded. The sketch for the median

alse,assumessa;maximumywindow si¥e and returns aie, &)-approximate median. For simplicity,
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we assume that a sketch never contains any element with atéimp of less tharic — W), where
c is the current time. This assumption is justified since tlgo@thms SumQuerySection2.2) and
MedianQuery(Section2.3) will never consider such elements with timestamps less tba W), even

if they are present in the sketch.

Lemma 2.4.1.

Slgum: S lLJJn?

Slﬁled: Sl{r\]%g

Proof. We showSK,,,= SK\;8, and a similar argument holds f@k _,= SK\E. Let R} andR§
denote the set of elements with timestamps in the maximurdawiric — W, c| over stream#\ andB
respectively. For=0,1,...,M, let iumi denote theth level sample oBK,,,, Similarly, we define
gumi7$umi and LLJJFEI

For any elementv,t) € R URR,, note that the same algorithBumProcess used to process the
element, whether it occurs as an element in stréaon B or AUB. SumProcessses only andt to
decide whether the eleme(tt) is selected into the sample at levedr not. Thus, if(vt) € RY, is
selected inta;,,, then it will also be selected in®&;7, and vice versa. Therefore the set of elements
that are ever selected in&),,; or £, is exactly the same set of elements that are ever selected int

LB Forany level =0...M, &, retains thex elements with the most recent timestamps that were

ever selected int&,;, and similarly withs5, ;. From Step and5 of Union(), we see thafg,,
retains thex most recent elements that ever selected &g, or into SSBumi. Thus,ﬁumi retains thex
most recent elements amoAg) B that were selected into leviebf SK* or SIE.

Note thatS{;7; also keeps ther most recent elements that are ever selectedSgjjf}. Thus, for
i=0,1,...,M, §,; = Simi» Which impliesSI,,,= SKin. O

From the above lemma, it follows that all propertiesS¥;2 carry over toSK;,,, From Theo-
rem2.2.1we know SK\\2 provides an(e, d)-estimate for the sum within any timestamp window of
width at mostW on AUB. Thus,SK;,,,also provides the same estimate for the sum within a sliding

window, showing that the union of sketches is lossless. Alaimrgument can be made for sketches
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for the median.

We now consider sketches that are combined in a hierarclaishion. Consider a tree where each
leaf observes alocal stream, and passes a sketch for therseaiiaf) up to its parent. Sketches arriving
at any internal node are combined and passed up the treghmtibot receives sketches from all its
children. If the algorithmUnion() was applied at every internal node of the tree, then the ralbt w
finally have a sketch that can be used to answer queries fauime(median) of elements within a
sliding timestamp window of the union of all streams app®aat the leaves of the tree. This can be
proved by repeatedly applying Lemn2a4.1at every internal node of the tree and at the root. The

above algorithm for the union applies even if the intermiedieodes of the hierarchy had local streams.

2.5 Concluding Remarks

In this chapter, we presented algorithms for sketching @wgmous data streams over a sliding
window of the most recent elements. Our sketches are baseghdom sampling and can return the
approximate sum or the approximate median of elementsmiittd sliding window. We note that the
same technique that was used for the median can also be useairimin approximate quantiles of
elements within the sliding window. These sketches are @sdul in distributed computations since

they can be composed in a compact and lossless manner.
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CHAPTER 3. General Time-decay Based Processing

This chapter presents a new sketch for summarizing generpbge network streaming data. It is
an generalization of the sketch in Chap2eThe new sketch has the following properties that make it
useful in communication-efficient aggregation in disttéml streaming scenarios, such as sensor net-
works: (1) The sketch can handle asynchronous data strg@n$he sketch is duplicate-insensitive,
i.e. reinsertions of the same data will not affect the sketaid hence the estimates of aggregates.
(3) Unlike previous duplicate-insensitive sketches forsee data aggregatio®4; 22), it is also time-
decaying, so that the weight of a data item in the sketch canedse with time according to any
arbitrary user-specified decay function, including thdisty window. (4) The sketch can give provably
approximate guarantees for various aggregates of datading the sum, median, quantiles, and fre-
guent elements. (5) The size of the sketch and the time takapdate it are both polylogarithmic in
the size of the relevant data. (6) Further, multiple skesatwmputed over distributed data streams can
be combined without loss of accuracy. To our knowledge, ithike first sketch that combines all the

above properties.

3.1 Introduction

We motivate the design of this new sketch for communicatifficient data aggregation in dis-
tributed data stream scenarios by looking at its usage intredess sensor networks as an example.
The growing size and scope of sensor networks has led tcegr@@mand for energy-efficient commu-
nication of sensor data. Although sensors are increasiogrimputing ability, they remain constrained
by the cost of communication, since this is the primary deeirtheir limited battery power. It is widely
agreed that the working life of a sensor network can be eeéty algorithms which limit communi-

cation 66). In particular, this means that although sensors may wedarge quantities of information
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over time, they should preferably return only small sumesdf their observations. Ideally, we should
be able to use a single compact summary that is flexible entmuglovide estimates for a variety of
aggregates, rather than using different summaries fanastig different aggregates.

The sensor network setting leads to several other destdeBatcause of the radio network topol-
ogy, it is common to take advantage of the ‘local broadcaaiidvior, where a single transmission can
be received by all the neighboring nodes. Here, in commtingdack to the base station, each sen-
sor opportunistically listens for information from othensors, merges received information together
with its own data to make a single summary, and announcesethgt.r This multi-path routing has
many desirable properties: appropriate merging ensuids sEmnsor sends the same amount, a single
summary, and the impacts of loss are much reduced, sinaenafmn is duplicated many times (with-
out any additional communication cos§4( 22). However, this duplication of data requires that the
quality of our summaries remains guaranteed, no matterhghet particular observation is contained
within a single summary, or is captured by many different swarmes. In the best case the summary is
duplicate-insensitivand asynchronousmeaning that the resulting summary is identical, irrespec
of how many times, or in what order, the data is seen and thesuies are merged.

Lastly, we observe that in any evolving setting, recent dataore reliable than older data. We
should therefore weight newer observations more heavén tiider ones. This can be formalized in
a variety of ways: we may only consider observations thatwihin sliding windows, and ignore
(assign zero weight to) any that are older, as we do in Ch&pter, more generally, use an arbitrary
decay function that assigns a weight to each observa2in A data summary should allow such decay
functions to be applied, and give us guarantees relatiiest@xact answer.

Putting all these considerations together leads to quitexgensive requirements list. We seek a
compact general purpossummary, which can apply arbitratyne decay functionswvhile remaining
duplicate insensitivand handleasynchronous arrivalsFurther, it should be easy tgpdatewith new
observationsmerge togethemultiple summaries, anduerythe summary to give guaranteed quality
answers to a variety of analysis. Prior work has consideegtbrs summaries which satisfy certain
subsets of these requirements, but no single summary hasabéeto satisfy all of them. Here, we
show that it is possible to fulfill all the above requiremehtsa single sketch which is based on a

hash-based sampling procedure that allows a variety okgatgs to be computed efficiently under a
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general class of decay functions in a duplicate insensiéighion over asynchronous arrivals. In the

next section, we describe more precisely the setting andreagents for our data structures.

3.1.1 Problem Formulation

Data Stream. We use the asynchronous data stream defined in Setitto model the stream of
observations seen by a single sen$d: (e),e,,...,6ey), Where eacle is a tuple(vi,w;, t;,id;). Recall
that it is possible that same observations appear muliiplestin the stream, but only one copy of the
duplicates should be counted in computing the aggregatesvedhave explained in Sectidn3 and
will see more examples in this chapter, the abstractionisfiiita stream model captures a wide variety

of cases that can be encoded in this form.

Decay Functions.Recall that a decay functiof(w, x) takes the initial weightv and the age of the
stream elementv,w,t,id), and returns the decayed weight of the element at any clowkdi The age

of the element at timeis defined ag —t, the elapsed time since the element was created. (Sdctipn

Definition 3.1.1. A decay function (w,x) is anintegral decay functioif f (w,X) is always an integer.
For example, sliding window decay is trivially such a functi Another integral decay function is:

f(w,x) = |w/2%|.

3.1.2 Aggregates

Let f(-,-) denote a decay function, acdienote the time at which a query is posed. Let the set of

distinctobservations iR be denoted byp. We now describe the aggregate functions considered:

Decayed Sum Attime cthe decayed sum is defined as

V= Z f(w,c—t)

(vwit,id)eD

i.e. the sum of the decayed weights of all distinct elementhé stream. For example, suppose every
sensor published one temperature reading every minuteogmaivd we are interested in estimating the

mean temperature over all readings published in the lastif0tes. This can be estimated as the ratio
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of the sum of observed temperatures in the last 90 minutdietaumber of observations in the last
90 minutes. For estimating the sum of temperatures, we densi data stream where the weight

is equal to the observed temperature, and the sum is estimaiieg a sliding window decay function
of 90 minutes duration. For the number of observations, wesider a data stream where for each
temperature observation, there is an element where thehiveguals to 1, and the decayed sum is

estimated over a sliding window of 90 minutes duration.

Decayedg-Quantile Informally, thedecayedp-quantileat timec is a valuev such that the total
decayed weight of all elements ihwhose value is less than or equalutas a @ fraction of the total
decayed weight. For example, in the setting where sensdisspuemperatures, each observation
may have a “confidence level” associated with it, which iScaesd by the sensor. The user may
be interested in the weighted median of the temperaturenadagms, where the weight is initially
the “confidence level” and decays with time. This can be aghieby setting the valug equal to
the observed temperature, the initial weightqual to the confidence levepy = 0.5, and using an
appropriate time decay function.

Since computation of exact quantiles (even in the unwethbdse) in one pass provably takes space
linear in the size of the se6l), we consider approximate quantiles. Our definition bel®wsuiited for
the case when the values are integers, and where there @uoidltiple elements with the same value
in D. Let the relative rank of a valugin D at timec be defined as
(S gwwtid)epveuy FWc—1)) /(3 wwtia)ep f(W.c—t)). Forauser definedQ < @, thee-approximate
decayedp-quantile is a value such that the relative rank ofis at leastp — € and the relative rank of

v—1lisless thap—+¢.

Decayed Frequent ltems Let the (weighted) relative frequency of occurrence of galat time

c be defined as
Wu) = ZLmtid)eDv=u) f(w,c—t)
> (vwwidyed f(W,c—t)

The frequent items are those valuesuch thaty(v) > ¢ for some thresholdp, say ¢ = 2%.
The exact version of the frequent elements problems regjthe frequency of all items to be tracked

precisely, which is provably expensive to do in small spae Thus we consider the-approximate
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frequent elements problem, which requires us to returnadllesv such thaty(v) > ¢ and no value

v/ such thatp(v') < p—e.

Decayed Selectivity Estimation A selectivity estimatiogquery is, given redicate Rv,w) which

returns 0 or 1 as a function @fandw, to evaluateQ defined as:

¥ (vwidyep P(w) f(w,c—t)
¥ (vwtidyep F(w,c—t)

Q=

Informally, the selectivity of a predicate(v,w) is the ratio of the total (decayed) weight of all stream
elements that satisfy predica®eo the total decayed weight of all elements. Note thatQ < 1. The

g-approximate selectivity estimation problem is to returalueQ such thaﬂ@— Ql<e.

An exact computation of the duplicate insensitive decayed sver a general integral decay func-
tion is impossible in small space, even in a non-distribigetling. If we can exactly compute a du-
plicate sensitive sum, we can insert an elemerand test whether the sum changes. The answer
determines whethex has been observed already. Since this would make it pogsilbexonstruct all
the (distinct) elements observed in the stream so far, sisei@h needs space linear in the size of
the input, in the worst case. This linear space lower bourdsheven for a sketch which can give
exact answers with & error probability ford < 1/2 (5), and for a sketch that can give a deterministic
approximation %; 53); such lower bounds for deterministic approximations &islal for quantiles and
frequent elements in the duplicate insensitive model. Mmook for randomized approximations of
all these aggregates; as a result, all of our guaranteed #dre form “With probability at least + 9,

the estimate is am-approximation to the desired aggregate”.

3.1.3 Contribution

The main contribution of this work is a general purpose dkdlat can estimate all the above
aggregates in a general model of network data aggregatiorik-gluplicates, asynchronous arrivals,
broad class of decay functions, and distributed computatithe sketch can accommodate any inte-
gral decay function, or any decomposable decay functioffififien 1.4.2. As already noted, to our

knewledgexpthe elass,efi;decomposable decay functionsdaslall the decay functions that have been
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considered in the data stream literature so far. The spanelegity of the sketch is logarithmic in the
size of the input data, logarithmic iry@ whered is the error probability, and quadratic ifd, where

¢ is the relative error. There are lower bound8)(showing that the quadratic dependence ga i&
necessary for duplicate insensitive computations on degarss, thus implying that our upper bounds
are close to optimal.

In an extensive experimental evaluation, we observed ligaspace required by the sketch in prac-
tice can be an order of magnitude smaller than the theofrgiredictions, while still meeting the ac-
curacy demands. Further, they confirm that the sketch carptated quickly in an online fashion,
allowing for high throughput data aggregation.

Our algorithm for an integral decay function is based on camégampling, and this chapter pro-
poses a novel technique that can quickly determine the timéhich an item must be retained within a
sample (this is called as the “expiry time” of the item). Ttashnique may be of independent interest.
Given a range of integers, it can quickly return the smaltgsger of the range selected by a pairwise

independent random sampling (or detect that such an intkgpsr not exist).

Outline of this chapter. After describing related work in Sectidh2, we consider the construc-
tion of a sketch for the case of integral decay in Sec8dh Although such functions initially seem
limiting, they turn out to be the key to solving the class ofa®posable decay functions efficiently.
In Section3.4, we show a reduction from an arbitrary decomposable deaagtiin to a combination
of multiple sliding window queries, and demonstrate hovs tieiduction can be performed efficiently;
combining these pieces shows that arbitrary decomposauaaydunctions can be applied to asyn-
chronous data streams to compute aggregates such as dscaygdquantiles, frequent elements (or
“heavy hitters”), and other related aggregates. A singte gfaucture suffices, and it turns out that even
the decay function does not have to be fixed, but can be chossmlaation time. In Sectio8.5, we

present the results of our experiments. We make some conglotiservations in Sectids6.

3.2 Related Work

There is a large body of work on data aggregation algorithmtle areas of data stream process-

ing (63) and sensor network&L; 3; 19). In this section, we survey algorithms that achieve sonaiof
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goals: duplicate insensitivity, time-decaying compwiasi, and asynchronous arrivals in a distributed
context — we know of no prior work which achieves all of thegeigtaneously.

The Flajolet-Martin (FM) sketch30) is a simple technique to approximately count the number of
distinct items observed, and hence is duplicate inseasiBuilding on this, Nath, Gibbons, Seshan and
Anderson 64) proposed a set of rules to verify whether the sketch is dagtinsensitive, and gave
examples of such sketches. They showed two techniquestibwatioese rules: FM sketches to compute
the COUNT of distinct observations in the sensor networl, amariation of min-wise hashind.g) to
draw a uniform, unweighted sample of observed items. Algerbging the FM sketct8@), Considine,

Li, Kollios and Byers 22) proposed a technique to accelerate multiple updates,emzktyield a dupli-
cate insensitive sketch for the COUNT and SUM aggregatesveMer, these sketches do not provide
a way for the weight of data to decay with time. Once an eleneeimserted into the sketch, it will
stay there forever, with the same weight as when it was iedénto the sketch; it is not possible to use
these sketches to compute aggregates on recent obsesvdtiarher, their sketches are based on the
assumption of hash functions returning values that are tgip independent, while our algorithms
work with the pairwise independent hash functions. Theltesi Cormode and Muthukrishna7)
show duplicate insensitive computations of quantilesyyaégtters, and frequency moments. They do
not consider the time dimension either.

Datar, Gionis, Indyk and MotwaniBg) considered how to approximate the count over a sliding
window of elements in a data stream under a synchronousbmiedel. They presented an algorithm
based on a novel data structure caleeghonential histogranfior basic counting, and also presented
reductions from other aggregates, such as sun¥amirms, to use this data structure. Gibbons and
Tirthapura 42) gave an algorithm for basic counting based on a data steiclledwavewith im-
proved worst-case performance. Subsequently, BravermeérOatrovsky 12) defined Smooth His-
tograms, a generalization of exponential histograms thlet further advantage of the aggregation
function (such as SUM and norm computations) to reduce theespequired. These algorithms rely
explicitly on synchronous arrivals: they partition theumnto buckets of precise sizes (typically, pow-
ers of two). So it is not clear how to extend to asynchronousads, which would fall into an already
“full” bucket. Arasu and Manku¥) presented algorithms to approximate frequency countsjaad-

tiles over a sliding window. The space bounds for frequeraynts were recently improved by Lee
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and Ting 64). Babcock, Datar, Motwani and O’Callaghal0) presented algorithms for maintaining
the variance and k-medians of elements within a sliding aindAll of these algorithms rely critically
on structural properties of the aggregate being approxidiatnd use similar “bucketing” approaches
to the above methods for counts, meaning that asynchromauals cannot be accommodated. In all
these works, the question of duplicate-insensitivity isaomsidered except in Datar, Gionis, Indyk and
Motwani (35), Section 7.5, where an approach to count the distinct gafua sliding window is briefly
described.

Cohen and Straus&1) formalized the problem of maintainirtgme-decayingggregates, and gave
strong motivating examples where functions other tharirglidvindows and exponential decay are
needed. They demonstrated that any general time-decatidnritased SUM can be reduced to the
sliding window decay based SUM. In this chapter, we extems rsduction and show how our data
structure supports it efficiently; we also extend the reidacto general aggregates such as frequency
counts and quantiles, while guaranteeing duplicate-giseity and handling asynchronous arrivals.
This arises since we study duplicate-insensitive comjauigi{not a consideration i2{)): performing
an approximate duplicate-insensitive count (even withioue decay) requires randomization in order
to achieve sublinear spacg)( Subsequently, Kopelowitz and Por&®2] showed that the worst-case
space of this approach for decayed SUM can be improved by carefully handling the number
of bits used to record timestamps, bucket indices, and soealicing the costs by logarithmic fac-
tors. They also provided lower bounds for approximationghwaidditive error but did not consider
duplicate-insensitive computation. Cohen and Kap) ¢onsidered spatially-decaying aggregation
over network data, based on tracking lists of identitiestbEpnodes in the network chosen via hash
functions.

Our results can be viewed as an algorithm for maintainingnapsa from the stream, where the
probability of an item being present in the sample is prapoél to the current decayed weight of that
item. Prior work for sampling with weighted decay includesbBock, Datar and Motwar®)( who gave
simple algorithms for drawing a uniform sample from a sligdimindow. To draw a sample of expected
sizes they keep a data structure of si@éslogn), wheren is the number of items which fall in the
window. Recently, Aggarwal?) proposed an algorithm to maintain a set of sampled elensentisat

the probability of theth most recent element being included in the set is (apprabgly) proportional
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to exp(—ar) for a chosen parametar An open problem from3) is to be able to draw samples with an
arbitrary decay function, in particular, ones where theestamps can be arbitrary, rather than implicit
from the order of arrival. We partially resolve this questidy showing a scheme for the case of
integral decay functions.

Gibbons and Tirthapura4() introduced a model of distributed computation over dateashs.
Each of many distributed parties only observes a local straad maintains a space-efficient sketch
locally. The sketches can be merged by a central site to a&ian aggregate over the union of the
streams: in 41), they considered the estimation of the size of the unionistfiduted streams, or
equivalently, the number of distinct elements in the str®alhis algorithm was generalized by Pavan
and Tirthapurag7) to compute the duplicate-insensitive sum as well as othgregates such as max-
dominance norm. Xu, Tirthapura, and Bus@)(proposed the concept of asynchronous streams and
gave a randomized algorithm to approximate the sum and medier a sliding window. Here, we

extend this line of work to handle both general decay andiclaggl arrivals.

3.3 Aggregates over an Integral Decay Function

In this section, we present a sketch for duplicate inseesiiime-decayed aggregation over an

integral decay functiorf (). We first describe the intuition behind our sketch.

3.3.1 High-level description

Recall thatR denotes the observed stream &hdenotes the set of distinct elementdRinThough
our sketch can provide estimates of multiple aggregateshéintuition, we suppose that the task was

to answer a query for the decayed sum of elemen ahtimek, i.e.

V= f(w,k —t)
(vwt,id)eD
Let wmax denote the maximum possible decayed weight of any elementyj,ax= f(w,0) wherew
denotes the maximum possible weight of a stream elementd l,gtdenote the maximum value wf.
Consider the following hypothetical process, which hagpainquery time<. This process description

is for intuition and the correctness proof only, and is naaeited by the algorithm as such. For each
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distinct stream elememt= (v,w,t,id), a range of integers is defined as

re = [Wmax: id, Wmax- id + f(w,k —t) — 1]

Note that the size of this rangg, is exactly f(w,k —t). Further, if the same elemeatappears
again in the stream, an identical range is defined, and forezi¢s with distinct values adl, the defined

ranges are disjoint. Thus we have the following observation

Observation 3.3.1.
z f(wk—t)=

e=(vwt.,id)eD

Ure
ecR

The integers irr§ are placed in random sampl&g T1,..., Ty as follows. M is of the order of
log(Wmax- idmax), @and will be precisely defined in Secti@i3.4 Each integer im§ is placed in sample
To. Fori=0...M—1, each integer ifi; is placed inT. 1 with probability approximately A2 (the
probability is not exactly 12 due to the nature of the sampling functions, which will bedmprecise
later). The probability that an integer is placedTins p; ~ 1/2'. Then the decayed sui can be
estimated using; as the number of integers selected ifitomultiplied by 1/p;. It is easy to show that
the expected value of an estimate usihg V for everyi, and by choosing a “small enough’we can
get an estimate fov that is close to its expectation with high probability.

We now discuss how our algorithm simulates the behavior @fathove process under space con-
straints and under online arrival of stream elements. OQwenting due to duplicates is avoided through
sampling based on a hash functigrwhich will be precisely defined later. If an elemer@ppears again
in the stream, then the same set of integéris defined (as described above), and the hash funbtion
leads to exactly the same decision as before about whetinet tw place each integer . Thus, if an
element appears multiple times it is either selected irgsdmple every time (in which case duplicates
are detected and discarded) or it is never selected intathels.

Another issue is that for an element (v,w,t,id), the length of the defined ranggis f(w,k —t),
which can be very large. Separately sampling each of thgenseinrf would require evaluating the
hash functionf (w,k —t) times for each sample, which can be very expensive time;wiseé expo-
nential in the size of the input. Similarly, storing all thelexted integers in§ could be expensive,

space-wisesskhuspwesstore all the sampled integer§ together (implicitly) by simply storing the

www.manaraa.com



53

elementein T;, as long as there is at least one integergirsampled intdl;. However, the query time
K, and hence the weight of an observatidé(w, k —t), are unknown at the time the element arrives in
the stream, which means the ranges unknown where is processed. To overcome this problem, we
note that the weight at time, f(w,k —t), is a non-increasing function af, and hencef is a range
that shrinks ag increases. We define the “expiry time” of elemerat leveli, denoted by expirfe,i),

as the smallest value af such thatr§ has no sampled elementsTh We storee in T; as long as
the current time is less than expieyi). For any queries issued at tinrke> expiry(e,i), there will be

no contribution frome to the estimate using levél and hences does not have to be storedTh In
Section3.3.3 we present a fast algorithm to compute ex(ery).

Next, for smaller values af T; may be too large (e.dlp is the whole input seen so far), and hence
take too much space. Here the algorithm stores only the sGbskat mostr elements ofl; with the
largest expiry times, and discards the rass(a parameter that depends on the desired accuracy). Note
that thert largest elements of any stream of derived values can begyeaaihtained incrementally in
one pass through the stream w@r) space. Let the samples actually maintained by the algoritam
denoteds,, S, ...,Su.

Upon receiving a query fov at time k, we can choose the smallessuch that§ = T;, and use
S to estimateV. In particular, for each elemeastin T;, the time-efficienRange-Samplinéechnique,
introduced in §7), can be used to return the number of selected integers natigers quickly in time
O(log|r&|).

We show an example of computing the time decayed sum in FgjdreSince the “value” fields
is not used, we simplify the element @gt,id). The input streaney, e, ..., eg is shown at the top of
the figure. We assume that the decayed weight of an elefwetit id;) at timet is «f = f(w;,t —t;) =
Lt"_v—itij. The figure only shows the expiry times of elements at lev8uppose the current tinte= 15.
The current state of the sketch is shown in the figure. At thieeatitime,e; ande; have expired at level
0, which implies they also have expired at all other levelsandeg do not appear in the sketch, because
they are duplicates @& andes respectively. Among the remaining elemestses, es, €5, only ther =3
elements with the largest expiry times are retaine&inthuse, is discarded fronty. From the set
{es,e4,65,65}, @ subsefey, 65,65} is (randomly) selected int6; based on the hash values of integers
in r® (this implies expiryes, 1) > 15, expiry(es, 1) > 15, expiryes,1) > 15 and expirye,,1) < 15),
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er=(w=09,t=2,id=1) ep=(w=10,t=6,id=2) )
Input: | e3 = (w=8,t =4,id =3) es=(w=8,t=7,id =4)
es = {(w=10,t=10,id =5) ep = (w=12,t=9,id = 6)
e7=(w=8,t=7,id=4) eg = (w=10,t =10,id =5)
15 — 15 15 15
) w2 =0, w 1, w3 =0, wz>=1
Decayed Weight: 1 3 4
w%5=2 wé5=2, w-}5=1 wé5=2
im0 — 19 emmimelon 0) — 17
expirylei, Q) = 12, expiry(es,0) = 17
Expiry Time at Level O: im0 — 12 il O — 16
expiry{es, 0) = 13, expiry(es,0) = 16
pmmdmai Ao N — D1 apmamal o N — 299
expiryles, 0) = 21, expiry(eg,0) = 22
il e N — 16 cmmisn oo N — D1
ETPITY\ET, V) = 10, eTPITY\eg, V) = 241 )
So: 1€4. [€2, €5, €q S1:[€4:€5,€6] So: [€5 | S3:] |

Figure 3.1 An example stream with 8 elements arriving in tliee;, e, . .., g,
and its sketcHSy, S1, S, Ss} for the decayed sum. The current time is
15. The decayed weight @ at timet is denoted byw!. The expiry
time of g at levelj is denoted by expirig, j). The elemeng, in the
dashed box indicates that it was discarded fi®mue to an overflow
caused by more than= 3 elements being selected inkg

and since there is enough room, all these are stor&d i@nly e is selected int& and no element is
selected into level 3.

When a query is posed for the sum at time 15, the algorithm fimelsmallest numbetsuch that
the sampleS, has not discarded any element whose expiry time is greaaer 1B. For example, in
Figure3.1, ¢ = 1. Note that at this levely = T/, and soS can be used to answer the query¥YorThe
intuition of choosing such a smalle&is that the expected sample size at ltislthe largest among all
the samples that can be used to answer the query, and thetlaegegample size is, the more accurate
the estimate will be. Further, it can be shown with high pholig, the estimate fol usingS has

error that is a function of; by choosingr appropriately, we can ensure that the error is small.

3.3.2 Formal Description

We now describe how to maintain the different sam@gs,,...,Sv. Leth be a pairwise inde-
pendent hash function chosen from a 2-universal family shifanctions as follows (following Carter
and Wegman1g)). Let Y = Wmax(idmax+ 1). The domain ohis [1...Y]. Choose a prime number
such that 18 < p < 20Y, and two numbera andb uniformly at random from{0,..., p—1}. The hash

functionh:{1 ... Y} — {0 ...,p—1} is defined af(x) = (a-x+b) modp. We define the expiry
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Algorithm 7 : Initialization(M)

1 Randomly choose a hash functibras described in Sectidh3.2

2 for0<i<Mdo

3 | S0

4 ti——1; /* t is maximum expiry time of all the elements discarded so
far at level i */

time of an elemeneé= (v,w,t,id) at sample level as follows.

Let AL = {t>t:|r}| > 0and forallxe ri,h(x) > [2-p—1]}. SetAl is the set of clock times at
which rangert;is not empty (meanind(w,t —t) > 0), but has no integers selected by the hash function
h at leveli. Note that whert becomes larger, rangé shrinks and eventually becomes empty, so the
size ofA\, is finite and can be 0.

LetBe = {{>1t:|rl|=0}. SetBe is the set of clock times at which ranggis empty (meaning
f(w,t —t) = 0). We assume that for every decay functiowe consider, there is some finite tirjgx
such thatf (w, tmax) = O for every possible weighw, soB must be non-empty.

It is obvious that ifAl # 0, then mirfAl) < min(Be) must be true, becauséw,t —t) > 0 for any
t € A, but f(w,t —t) = 0 for anyt € Be, so all the clock times in st must be smaller than all the

clock times in seB.

Definition 3.3.1. For stream elemente (v,w;t,id), and leveld <i < M:

min(AL) if AL#£0

min(Be) otherwise

expiry(e,i) =

Intuitively, expiry(e,i) is the earliest clock time, at which either the corresponding non-empty
integral rangert; has no integers selected by hash functioat leveli or the decayed weight of
becomes 0.

The sketclSfor an integral decay function is the set of pai&t;), fori =0...M, where§ is the
sample, and is the largest expiry time of any element discarded f®so far. The formal description

of the general sketch algorithm over an integral decay fands shown in Algorithm& and8.

Lemma 3.3.1. The sample ;Ss order insensitive; it is unaffected by permuting the ordearrival

ofsthesstreampelementsaplihe sample is also duplicate irtsemsif the same element e is observed
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Algorithm 8: Processlteng=(v, w, t, id))
1 for0<i<Mdo

2 if (e€ §) thenreturn ; /* e is a duplicate. */
3 if (expiry(e,i) > max{c,t}) then

4 S —Su{e}
5

6

7

if |S|> tthen /* overflow */
tj < Minecs expiry(e,i);
S «— S\{e: expiry(ei) =t};

Algorithm 9: MergeSketche§ S)

1 for0<i<Mdo
2 S —SuUS;

3 | t—maxt,t};

4 | while |§|>r1do

5 L tj < Minecs expiry(e,i) ;

6 S — S\{e: expiry(ei) =ti};

multiple times, the resulting sample is the same as if it Freezhlobserved only once.

Proof. Order insensitivity is easy to see singeis the set ofr elements inl; with the largest expiry
times, and this is independent of the order in which elemartge. To prove duplicate insensitivity,
we observe that if the same element (v,w,t,id) is observed twice, the function expieyi) yields

the same outcome, and hergés unchanged, from whic§ is correctly derived. O

Theorem 3.3.1. Suppose two samples &d $ were constructed using the same hash function h on

two different streams R and Respectively. Then;&nd $ can be merged to give a sample dfR’.

Proof. To merge sample§ andS from two (potentially overlapping) streanfsandR’, we observe
that the requiredth level sample o0RUR is a subset of the elements with the largest expiry times in
TiU T/, after discarding duplicates. This can easily be computed § andS. The formal algorithm

is given in Algorithm0. O

Since it is easy to merge together the sketches from digddbobservers, for simplicity the subse-

guent discussion is framed from the perspective of a sirtgdas. We note that the sketch resulting
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from mergingSandS gives the same correctness and accuracy with resp&st/f® as didSandS

with respect tR andR’ respectively.

Theorem 3.3.2(Space and Time Complexity)rhe space complexity of the sketch for integral decay is
O(Mr1) units, where each unit is an input observatiornw,t,id). The expected time for each update is

O(logw(logt + logw+ logtmax) ). Merging two sketches takes timéNDr ).

Proof. The space complexity follows from the fact that the sketaisgsis ofM + 1 samples, and each
sample contains at moststream elements. For the time complexity, the sangpt&n be stored in a
priority queue ordered by expiry times. To insert a new el@neénto S, it is necessary to compute
the expiry time ofe as expirye i) once. This takes tim©(logw + logtmax) (Section3.3.3. Note
that for each elemerd, we can compute its expiry time at levieexactly once and store the result
for later use. An insertion int& may cause an overflow, which will necessitate the discarding
elements with the smallest expiry times. In the worst caliegl@aments in§ may have the same
expiry time, and may need to be discarded, leading to a co€t(of+ logw + logtmax) for S, and
a worst case time oO(M(1 + logw+ logtmay)) in total. But the amortized cost of an insertion is
much smaller and i©(logw(logT + logw + logtmax)), Since the total number of elements discarded
due to overflow is no more than the total number of insertiamsl the cost of discarding an element
due to overflow can be charged to the cost of a correspondseytion. The expected number of
levels into which the elememt= (v,w;t,id) is inserted is noM, but onlyO(logw), since the expected
value of|[{h(x) < |27'p| : x € rS}| = pi|rS| ~ w/2. Thus the expected amortized time of insertion is
O(logw(logT + logw + 10gtmax)).

Two sketches can be merged in ti@EM 1) since two priority queues (implemented as max-heaps)

of O(t) elements each can be merged and the smallest elementsididda®(1) time. O

3.3.3 Computation of Expiry Time

We now present an algorithm which, given an elemeest(v,w,t,id) and leveli,0 <i <M, com-
putes expirye,i). Recall that expirye i) is defined as the smallest integer> t such that either
f(w,k —t) = 0 (meaning|r§| = 0) or [{x € r& : |r¥| > 0,h(x) < [27'p]}| = 0. Lets, = min{x €

rt:h(x) € {0,1,...,|2 'p|] — 1}}. Note thats, may not exist. We definal as follows. Ifs, exists,

www.manaraa.com



58

Algorithm 10: ExpiryTime(e,i)
Input: e=(vwt,id),i,0<i<M
Output: expiry(e,i)
1 AL — MinHit (p,a,h(Wmax-id),w- f(0) —1,[27'p| — 1) ; /* h(x) = (ax+b) modp */
if A, > 0then /* &, exists */
| —0O;

2
3

4 I — tmax;

5 | t—|(+r)/2];
6 | whilet'#1do /* Binary Search for t' x/
7 if (f(wt') > AL)thenl «t';

8 elser —t’;

9 t'— [(I1+r)/2];

10 return t+t’;

11 else returnt ; /* S does not exist */

thenAl = 8, — Wmax- id > 0; else, AL, = —1. In the following lemma, we show that givey, it is easy

to compute expirie,i).

Lemma 3.3.2.1f AL > 0, thenexpiry(e,i) =t +t/, where t = min{t : f(w,t) <AL}. Further, givenAl,

the expiry time can be computed in timé@tyay). If AL = —1, thenexpiry(ei) =t.

Proof. If Al > 0, meanings, exists, sincef (w,x) is a non-increasing function of whenx becomes
large enough< tmay) We can havevmax-id + f(w,x) — 1 < g, i.e., f(w,x) < AL, which further means
the range of ™ does not include.,. Sinces, is the smallest selected integerripat leveli, andr™
is the smaller portion off, and does not includg, sorlt* does not have any selected integer at lével
In other wordsg has expired at time+ x as long asf (w,x) < AL. By the definition of the expiry time,
we have expirge i) =t+min{x: f(w,x) <AL} =t +t'.

If AL = —1, meanings, does not exist, then there is no integerjno be selected at levél e
expires since it was generated at timee., expirye,i) =t.

If AL > 0, we can perform a binary search on the rang,0f+ tyay to findt’, using O(logtmax)

time. If AL = —1, simply set expirge,i) =t. O

The pseudocode for ExpiryTinig which computes expire,i), is formally presented in Algo-

rithm 10.
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Algorithm 11: MinHit(p,a,u,n,L)
Input: p>0,0<a<p,0<u<p,n>0,L>0
Output: d=min{i: 0<i<n,(u+i-a) modp <L}, if dexists; otherwise;-1.

/* Recursive Call Exit Conditions */
1if (p<Loru<lL)then return O;
2 else if(a=0) then return —1,
3 else
4 Compute|S| ; /* S={u,(u+a) modp,---,(u+n-a) modp} =SS ---S */
5 if (|S|=n+1)then return —1;
6 elseif(a=1) then return (p—u);

/* Recursive Calls */
7r«<—p moda;
8 Computek, f; ; /* f1 is the first element of § */

9 if (a—r <a/2)then d «— MinHit(a,a—r, f;,k—1,L);
10 else d < MinHit (a,r,(a— f1+L) moda,k—1,L);
/* Recursive Call Returns */
11 if (d # —1) then
12 Computefy s ;
13 L d—[(d+1)p—u+ fgi1]/a;

14 return d;

We can now focus on the efficient computationf One possible solution, presented in a pre-
liminary version of this work 30), is a binary search over the randgto find A,. This approach takes
O(logwlogtmax) time since in each step of the binary search, a RangeSa6#)leferation is invoked,
which takeO(logw) time, and there ar®(logtmax) such steps in the binary search.

We now present a faster algorithm for computihig called MinHit() which is described formally
in Algorithm 11. Given hash functioi and sample level in O(logw) time, MinHit() returnsAL.

Let Z, denote the ring of non-negative integers modploLet | = Wmax-id andr = Wmay: id +
f(w,0) — 1, the left and right end points of. The sequencé(l),h(l +1),...,h(r) is an arithmetic
progression oveZ, with a common differenc&. The task of findingNe reduces to the following

problem by settingi = h(l) andn= f(w,0) —1,L = [p2~'| — 1.

Problem 1. Given integers p-0,0<a< p,0<u< p,n>0, L >0, compute d, which is defined as

follows. If setP={j:0< j<n,(u+j-a) modp <L} #0,thend=min(P); else, d= —1.

Let:Sdenote the following arithmetic progression g (u modp, (u+a) modp,...,(u+n-a)
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modp). Let Si] denote(u+i-a) modp, theith number inS. Problem1 can be restated as: find the
smallest integef,0 < j <n, such that§j] <L.

Note that ifL > p, then obviouslyd = 0. Thus we consider the cake< p. Similar to the approach
in (67), we divideSinto multiple subsequenceS= S5 ..., as follows: § = (§0],5[1] ..., Si]),
wherei is the smallest natural number such t8at > Sji + 1]. The subsequencé, j > 0, are defined
inductively. If §;_1 = (St],St+1]...,Sm]), thenS; = (Sm+1],Sm+2],...,9r]), wherer is the
smallest number such that- m+ 1 andSjr] > Sr + 1J; if no suchr exists, ther§r] = Sn|. Note that
if §; = (St],St+1],...,9m]), then(St],St +1],...,Sm]) are in ascending order and ji> 0 then
St] < a. Let f; denote the first element i§. Let sequencd = (fp, f1,..., fk). Let|S| denote the
number of elements i, 0<i <k.

We first observe the critical fact thati# 0, ((u+d-a) modp) must be a member &f. More

precisely, we have the following lemma.
Lemma 3.3.3.1fd # —1, then 3d] = f,,e F, where m=min{i : 0 <i <k, f; <L}.

Proof. First, we proveSd| € F. SupposeSd] ¢ F andSd] € S, for somet, 0<t <k. Let fy = §d].
Note thatd’ < d. SinceS[d] ¢ F, we havef; < S[d] < L. Becausel’ < d, if d’ is not returnedd will
not be returned either. This yields a contradiction. SecearmproveSd] = fy,. SupposeSd| = fyy,
wherem’ > m. Let f,, = S[d’]. Note thatd’ < d asm< . Sinced’ < d andSd’] <L, if d" is not

returnedd will not be returned either. This is also a contradiction. O

The next lemma shows that usingand f,, in Lemma3.3.3 we can obtaird directly.
Lemma 3.3.4. If m exists, then & (mp— fo+ fm)/a.

Proof. Let S = §0],...,Sd] denote the sub-sequence starting frégto f, in S so 0] = fp and
§d] = fm. The distance that has been traveled in the progressiontleaing Z, from fg to fy is
(mp— fo+ fy). Since the common difference in the progressioa, iwe haved = (mp— fo+ fm)/a

Note thatfp = u modp is known. O

The next observation fron67) is crucial for findingm.

Observation 3.3.2(Observation 2, Section 3.67)). Sequenc& = F \ { fo} is an arithmetic progres-

sioneverZywith.eommenydifference-ar (or —r equivalently), where = p moda.
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So, we have two possibilities: (1) f <L, thenm= 0 andf, = fp, thusd = 0. (2) Else, the task

of finding mis a new instance of Probleinof a smaller size by setting:

Prew=2a, apew=a—"I, Unew= f1, Mew=K—1, Lpew=1L

Note that oncenis known, we can directly obtaify, = (f;+ (m—1)(a—r)) moda.

However, because of the similar argument67)( the reduction may not always be useful since
a—r may not be much smaller than However, since at least one ®f-r orr is less than or equal to
a/2, we can choose to work with the smalleraof r or r as follows. The benefit of working with the

smaller one will be shown later in the time and space comiylexialysis.

Reduction in Case l:a—r <a/2 We work witha—r. Probleml is recursively reduced to a

new instance of Problerhof a smaller size that finds over sequencE_by setting:

Prew=2a, apew=a—"I, Unew= f1, Mew=Kk—1, Lpew=1L

Reduction in Case 2:r < a/2 We work withr. In this case, things are a bit complex. First we
visualize the intuition with the help of Figu®2 Note thatF = (f1, f2,..., fk) is a sequence of points
lining up along the ring o¥Z, with common difference&—r > a/2. For simplicity, we only show the
first few elements ifF, say(fi, fo,..., fs). We want to find the first point in sequenEethat is within
the dark rangg0, L] in Figure3.2(a)

Note that our goal is to malkae,, to ber in the parameter setting of the new instance of Proldem
for findingm, so we flip the ring 0%, along with the points on it (Figurg.2(a) and get the result shown
in Figure3.2(b) After this flipping, the points ilh'-_comprise anew sequenE_é: (f1, f5,..., f), where
f/ = (a— fi) moda, 1<i <k, the dark range€O,L] is mapped to the new orja— L,a— 1] U {0}.
Note thatF’ is an arithmetic progression ov&g with common different-(a—r) moda=r. Let
m=min{i:a—L<f/ <a—1lorf/=0,1<i<Kk}, ie., f}is the first point inF’ such thatf/, is
within the dark range in Figurg.2(b) Obviouslym’ = m, as we did not change the relative positions
of all the points and the dark range during the flipping. Ndtat tthe idea of flipping the ring is

implicitly proposed in 67), however, it is not clear how to further apply the techniqué67) to find
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m'.

Our new idea is to shift the origin of the ring &f in Figure3.2(b)by a distance ok in a counter-
clockwise direction without moving all the points and theldeange, resulting in Figurd.2(c) After
this shifting, sequencE’ in Figure3.2(b)is mapped to a new sequengé = (f,15,..., ) in Fig-
ure 3.2(c) wheref” = (f/ +L) moda, and the dark range in Figu&2(b)is mapped tg0,L] in
Figure3.2(c) Letm’=min{i: 0< f” <L,1<i <k}, i.e., fyy is the first point inF” such thatf,y
is within the dark rang€0, L] in Figure3.2(c) Obviouslym” =, as we did not change the relative
positions of all the points and the dark range during theiskibf the origin in Figured.2(b) This fur-
ther impliesm” = m. Therefore, Probler can be recursively reduced to a smaller problem of finding

m’ over sequencE” by setting:
Prew=2 &new="' Uew=(a—fi+L) moda, new=Kk—-1, Lpew=L

We note that the idea of shifting the origin of the ring is veimple and useful. Using this idea
simplifies theHits algorithm in 67) since all the additional operations dealing with the eféédlipping
the ring can be omitted.

The above visualized intuition in case 2 is validated by til®Wwing lemma.

Lemma 3.3.5. Given pa,u,n,L as in Probleml, set P={i :0<i<n,(u+i-a) modp<L} and

P={j:0<j<n((p—u+L) modp+j-(p—a)) modp<L},then:
P=P
Proof. (i) P C P'. Suppose/ € P, then 0< y <nand(u+y-a) modp < L. We provey € P'.

[((p—u+L) modp+y-(p—a) modp
= [p—u+L+y-(p—a) modp
= [L—(u+y-a)] modp

= [L—(u+y-a) modp], modp
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(a) Ring ofZ4 and Sequencé  (b) Flipped Ring oz, and (c) Flipped Ring of Z4
Sequencé’ with Shifted Origin and Se-
quence-”

Figure 3.2 Findfy, € F over the Ring oZ, in the Case of < a/2

Since 0< (u+y-a) modp<L,wehave O< [L— (u+y-a) modp] modp<L. ThusyeP.
(i) P C P. Suppose/ € P/, then 0< y<nand[(p—u+L) modp+y-(p—a)] modp<L.We

provey < P.

[((p—u+L) modp+y-(p—a) modp

= [L—(u+y-a) modp] modp

IN

L

If (u+y-a) modp>L, say(u+y-a) modp=L+ o < P for someo > 0, from the above
inequality, we can have th&at-0) modp=p—o0 <L, i.e.,,L+ 0 > P, this yields a contradiction.

Therefore(u+y-a) modp<L. So,yeP. O

SinceP = P/, then the Problem with the settingpnew = a, @hew=a—r, Unew = f1, Nhew=k—1,
Lhew= L and the Probleni with the settingppew = &, @hew =", Unew= (@— f1+L) moda, Nhew =

k—1,Lhew= L return the same answer.

Lemma 3.3.6. The algorithmMinHit (p,a,u,n,L) (shown in Algorithml1) computes d in Problerh

in time Q(logn) and space Qogp+ logn).

Proof. Correctness. Recall that MinHitp,a,u,n,L) should returnd = min{i : 0 <i <n,(u+i-a)
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correctly handles this scenario; Elseaif 0, which means all the integers in sequeSaae equal to
u, since after linel we knowu > L, d = —1 is returned in line; Else, if S= &, since after linel we
know fg > L, all the integers irS are greater thah, thusd = —1 is returned at lin&; Else, ifa= 1,
since|S| > |S|, we can easily find1 = Sp—u] =0 < L, thusd = p—uis returned by lines. If all
the above conditions are not satisfied, we have1,u > L,L < p,|§ > |S|. Sincefo=u> L, by
Lemma3.3.3 if d # —1, we knowSd] € F. Because of Observatidh 3.2 we can make a recursive
call at lines9 or 10, to find j, 1 < j <k, such thatf; = §d]. Because of Lemma&.3.5 lines9 and10
return the same result (with different time cost though)ings$he formula presented in Lemr3a3.4
the answer for the original problem is calculated and retditoy linesl1-14 using the answer from the
recursive call at either stepor 10. Therefore, MinHitp,a,u,n,L) correctly returng as the answer
for Problem1.

Time Complexity. We assume that the additions, multiplications and divisitake unit time. It
is clear that linesl-8 and11-14 can be computed in constant time. In each recursive calhes
and line10, becauseney < [n-a/p] anda < p/2 always hold in every recursive call, thus we have
Nnew < N/2, which yields the time cost of MinHip,a,u,n,L) is O(logn).

Space Complexity. In each recursive call, MinH{} needs to store a constant number of local
variables such ap,a,n,etc. Sincep dominatesa, u andL (if L > p, then MinHit() returns without
recursive calls), each recursive call ne@ftog p-+logn) stack space. Since the depth of the recursion
is no more than log, the space cost i©(logn(logp+logn)). Using a similar argument as i867),
in general MinHit p1, p2, Ps, P4, Ps) = B + yMinHit(p}, p5, P5, P4, Ps), whereB andy are functions of
p1,...,Ps. This procedure can be implemented using tail recursion¢ghwtioes not need to allocate
space for the stack storing the state of each recursive sttpl@es not need to tear down the stack

when it returns. Thus, the space cost can be reduc@dltg p+ logn). O

Theorem 3.3.3.Given a stream element-e (v,w,t,id) and the sample level @ <i <M, expiry(ei)

can be computed in time(@gw + logtmax) using space Qogp-+ logw).

Proof. MinHit() can compute\, in O(logw) time using spac®(log p+ logw). Due to Lemma8.3.2
givenAL algorithm ExpiryTime) computes expirge, i) using additionaD(logtmay) time for the binary

search. O
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Algorithm 12: DecayedSumQuerg)

1/=min{i:0<i <M.t <c};

2 if ¢ does not existhen return ; /* the algorithm fails */
3 if ¢ existsthen return % > ecs, RangeSampleg, /);

Faster Computation of Expiry Time In some cases, the expiry time can be computed faster than

using the above algorithm. In particular, it can be compiuri€d(logw) time, if the decay functiori has

the following property: given an initial weight and decayed weight' <w, min{x: f(w,x) =w'} can

be computed in a constant number of steps. This includegaddass of decay functions. For example,
for the integral version of exponential decéw,x) = |w/a*|, givenA, > 0 (note thatwv = AL+ 1),
which is computedO(logw) time, the expiry time can be computed in a constant numbetepiss
through expirye,i) = [log,(w/(AL+1))| +t+ 1, wheree= (v,w,id,t). A similar observation is true

for the integral version of polynomial decdyw,x) = |w- (x+1)~2|. For the sliding window decay,

givenAl > 0, then expirye,i) =t +W, wheree = (v, w;t,id) andW is the window size.
3.3.4 Computing Decayed Aggregates Using the Sketch
We now describe how to compute a variety of decayed aggregateqg the sketcB. Fori =0... M,

let pi = | p2~'| /p denote the sampling probability at level

Decayed Sum We begin with the decayed sum:

V= f(w,c—t)

(vwit,id)eD

For computing the decayed sum, let the maximum size of a sabgat = 60/£2, and the maximum

number of levels b = [logWnax+ [0gid max] -

Theorem 3.3.4.For any integral decay function f, Algorithd? yields an estimato¥ of V such that
PV —V| < &V] > 2/3. The time taken to answer a query for the sum [©OM + (1/£2) l0gWinay)-
The expected time for each update idd@w(log(1/€) + logw -+ logtmax)). The space complexity is
O((1/€?)(10gWrmax-+ 10gidmay))-
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Proof. We show the correctness of our algorithm for the sum througgdaction to the range-efficient
algorithm for counting distinct elements fro®7) (we refer to this algorithm as the PT algorithm, for
the initials of the authors of6{)). Suppose a query for the sum was posed at tm€onsider the
stream.# = {r$ : e € R}, which is defined on the weights of the different stream el@mehen the
query is posed. From ObservatiBr8.1, we havel U s r| = V.

Consider the processing of the streafnby the PT algorithm. The algorithm samples the ranges
in .7 into different levels using hash functidn When asked for an estimate of the size pf ,r,
the PT algorithm uses the smallest level, $apuch that the{e € D : RangeSamplgg, ¢') > 0}| <,
and returns an estima¥e= (1/py) S .cp RangeSampleg, ¢'). From Theorem 1 in@7), Y satisfies the
condition PflY —V| < V] > 2/3 if we choose the sample size= 60/¢2, and number of levelM
such thatM > logVmax WhereVnax is an upper bound oxi. Sincewmaddmax iS an upper bound ov
(each distincid can contribute at mostinax to the decayed sum), our choice Mfsatisfies the above
condition.

Consider the sampl& used by Algorithml2 to answer a query for the sum. Suppésxists, then
¢ is the smallest integer such that< c. For everyi < ¢, we have; > ¢, implying thatS has discarded
at least one elememtsuch that RangeSamt€,i) > 0. Thus for level < ¢, it must be true thaf{e:
RangeSampleg,i) > 0}| > 1, and similarly for level, it must be true thai{e: RangeSampleg, /) >
0}| < 1. Thus, if level? exists, thery = ¢/, and the estimate returned by our algorithm is exa¥tly
and the theorem is proved. dfdoes not exist, then it must be true that for every léyel< i < M,
|{e € D: RangeSamplgs,i) > 0}| > 1, and thus the PT algorithm also fails to find an estimate.

For the time complexity of a query, observe that finding tiglatievel/ can be done iI©(logM)
time by organizing thé&s in a search structure, and orfdeas been found, the function RangeSarfiple
has to be called on th@(1) elements ir§, which takes a furtheD(logwmay) time per call to RangeSamgle

The expected time for each update and the space compleétstigtifollows from Theoren8.3.2

O

We note that typically one wants a guarantee that the fapoobability isd <« % To give such
a guarantee, we can ke@glog 1/9) independent copies of the sketch (based on different hash fu
tions), and take the median of the estimates. A standardnGfidsounds argument shows that the

median,estimatejis;aceurate withéd with probability at least - J.
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Selectivity Estimation Now we consider the estimation of the selectivity

Y (vwt.id)ep P(v, W) f(w,c —t)
> (vwt,id)ep f(W,c—t)

Q=

whereP(v,w) is a predicate given at the query time. We return the selgctdf sampleS using
the predicateP as the estimate dD, where$S is the lowest numbered sample that does not have any
discarded element whose expiry time is larger tbamhe formal algorithm is given in Algorithri3.
We show that by setting = 492/&2 andM = [logWmax+10gidmax|, we can get Theorer®.3.5

The following process only helps visualize the proof, anddsexecuted by the algorithm. Since
the sketch is duplicate insensitive (Lemi3&.1), we simply consider stream, which is the set of
distinct elements in streaR. At query timec, streamD is converted to be a stream of intervals
D’ = {r§:d e D}. Note thatd = (v,w,t,id) andr§ = [Wmax* id, Wmax*id + f(w,c—t) — 1]. Further,
streamD’ is expanded to streamnof the constituent integers. For each interpaly] € D/, streaml
consists ofk,x+1,...,y. Clearly all the items i are distinct and the decayed si= |I|. Given the
selectivity predicat®(v,w), letl = {x € rS) :d = (vw,t,id) € D, p(v,w) = 1} andV’ = |I’|. Note that
I” C I and the selectivity with predicate(v,w) is Q =V’/V, for which we compute an estimatg.
Recall that the sample size= C/&2, whereC is a constant to be determined through the analysis.

The next part of this section, from Fag3.1through Lemm&a3.3.15 helps in the proof of Theo-

rem3.3.5(stated formally below). The proof idea is similar to the dmeTheorem2.3.1
Fact 3.3.1(Fact 1 in §7)). Foranyic [0...M],1/2*1 < p <1/2
Lemma 3.3.7.1If ID’'| < 1,then Q= Q'

Proof. If |D'| <1, all ther§ € D’ can be implicitly stored ir%, i.e., all unexpired stream elements can

be stored irg, which can return the exaQ. O
Thus, in the following part of the proof, we assufig| > 1.

Definition 3.3.2. For each ec I, for each level i=0,1,...,M, random variable Xe) is defined as

follows: if h(e) € [0, [ p2~'|], then x(e) = 1; else x(e) = 0.
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Definition 3.3.3. For i =0,1,...,M, T, is the set constructed by the following probabilistic pis&e
Start with T« 0. If there exists at least one integey g, where de D, such that Ky) = 1, insert d

into T,.

Note thatT; is defined for the purpose of the proof only, but Theare not stored by the algorithm.

For each level, the algorithm only stores at moselements with largest expiry time.

Definition 3.3.4. Fori =0,1,...,M, X = Jycre X (¥), X' = Yyere prvw=1% (¥), where d= (v,wt,id) €
D.

Lemma 3.3.8. For any ec r§,d € D, E[xi(€)] = pi, 07 = pi(1— ), 0<i <M,

Proof. E[x (e)] = Prixi(e) = 1] = Prio < h(e) < [p2"'|] = [p2 ' = p.

Iy () = EDE(6)] — Elxi(e)] = Prixf(e) = 1] — Prixi(e) = 1J2 = pi — pf = pi(1— p) O
Lemma3.3.9.Fori=0,1,.... M, E[X] = pV, 0% = pi(1-p)V,E[X] = pV', of, = pi(1- pi)V’
Proof. E[X] = E[JyereXi(y)] = {y € rg:d € D}-E[x(y)] = pV. Sincex(y)'s are pairwise indepen-

dent random variables, we havef = |{y € r§:d € D}|- szi(y) = pi(1— pi)V. Similarly, E[X/] = pi\V’,
0% = pi(1-p)V' are true. O

Definition 3.3.5. For i =0,1,...,M, define event Bo be true if Q ¢ [Q — €, Q+ €], and false other-

wise; define event;Go be true if(1—€/2)pV < X < (1+¢/2)pV, false otherwise.
Definition 3.3.6. Let¢* > 0 be an integer such tha&i[X,] < 1/2andE[X;:] > 1/4.
Lemma 3.3.10.Level/* is uniquely defined and exists for every input stream D.

Proof. Since|D’| > 1, E[Xo] > 1. By the definition ofM = 10gWmaxidmay it must be true thay < 2M
for any input streanD, so thatE[Xy] < 1. Since for every increment inE[X;] decreases by a factor of

2, there must be a unique levekO/* < M such thaE[X,] < a /2 andE[X;<] > a /4. O

From now on we consider the case witke@ < 1/2. By symmetry, a similar proof exists for the
case with ¥2 < Q < 1. Obviously the algorithm can retu@ = Q, if Q € {0,1}.

The following lemma shows that for levels that are less thaequal to/*, Q' is very likely to be

—
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Lemma 3.3.11.For0 < ¢ < ¢*,

Pr[Bg] < W

Proof.

PiBJ] = PrGyAB/]+PiG,AB]

< PiB|G/] - PG| + PG| < Pr{By|Gy] + P1{G]

Using Lemmag.3.12and3.3.13in Equation3.1, we get:

5

Pr[Bg] < W

Lemma 3.3.12.For0 < ¢ < ¢*,
1

PG/ < Cor 74

(3.1)

Proof. By Lemma3.3.9 ux, = p/V, oﬁl = p(1— pr)V, and by Chebyshev’s inequality, we have

PG, = PriX, < (1—(/2)ux VX > (14 (€/2)) x|

= PH|X; — pix,| > (€/2) - pix,]
2

(e/zfxé% = (1-p)/ ((e/2% bx,)

1 - 1
(/2% 1, ~ C-27 T

IA

IN

The last inequality is due to the fagix, > 2" ~*- uy. > 2" ~*.1/4=2""""2.C/&?, using Fac8.3.1

Lemma 3.3.13.For0 < ¢ < ¢*,
1

Pr[Bng] < W

Proof.

PriB:|G/] = PIQ < Q' — €|G/] + PiQ > Q + |G/

O
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The proof will consist of two parts, EquatioBs2 and3.3.

1

1
PiQ—¢e> Q|G < C. o5 (3.3)

Proof of Equatior8.2 LetY = 3,/ x/(y) = QX > (Q+€)X,. By Lemma3.3.9 we havepy =
PV Q, 02 = py(1— py)V Q. Using Chebyshev’s inequality and the fXet> (1—£/2)p,V, we have the

following,

PiQ+e<Q|G] < PrY > (Q+&)X/|G/
= PI(Y > (Q+£)X)AG//PiG/]
< PiY > (Q+e)(1-¢/2)pV]/PrG/]
= PY - >(Q+e)(1-¢/2)pV — pv]/PG/]

( % ) e
[(Qt+e)(1—¢g/2)pV — ]2 ‘
) /PHG

( [(Q+¢) (Fl)Z£187 ZF;EF)):QQ— PV QP2
1

C.oF 5

The last three inequalities use the fagtb:- p/)Q < 1, (Q+¢€)(1—€/2) > Q+¢/2dueto O € <
Q<1/2,pV > 2"‘1/4 and choosing > 32.
Proof of Equatior3.3: By symmetry, the proof is similar as the one for Equatdo?d Therefore,

1
PiB/|G/] < Cor 7%

Lemma 3.3.14.

=t 160

/; PI’[Bg] < <
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Proof. The proof directly follows from Lemm3a.3.11

(= (=t 80 &

Z}Pr{BZ ;)C 2(* -4~ C ZZI

Lemma 3.3.15.
Pri¢ > 0" < =
e>0)< 3
Proof. If ¢ > ¢, it follows that X, > |T;<| > T, else the algorithm would have stopped at a level less
than or equal ta*. Thus, Pf > ¢*] < PriXs > 1]. LetY = X;~. By Lemma3.3.9 Chebyshev’s

inequality and the fagty < 7/2, we have

UY Ppe(l—p)V _ 1—py

Pri¢ > 1 <PrY > 1] < PY > 2 PAY — uy > =
(6> £ <PAY > 1) < PAY > 240 = PARY -y > ] = [ = HE 0 = S0

Sincepy = pV > 1/4, we have

O

Theorem 3.3.5. For any integral decay function f, Algorithri3 yields an estimat&) of Q such
that Pr[|Q — Q| < €] > 2/3. The time taken to answer a query for the selectivity of P (lwgM +
(1/€?)logwmay). The expected time for each update i@d@w(log(1/€) + logw + logtmay)). The

space complexity is @1/£2)(10gWmax+ 10gidmay)).

Proof. Let f denote the probability that the algorithm fails to returnsaapproximate selectivity esti-

mation ofD. By using Lemmag.3.14and3.3.15andC = 492, we get:

L

f=Pr[£>M]+Pr{LMJ(£=i)/\Bi]gPr{£>£* +%PrB. 3

i=0

The query time complexity analysis is similar to the one fa sum in Theorern3.3.4 The expected

time for each update and the space complexity directly iedlerom Theoren8.3.2 O
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Algorithm 13: DecayedSelectivityQueri(c)
1/=min{i:0<i <M.t <c};
2 if ¢ does not existhen return ; /* the algorithm fails */

. : e (wntid)cs RANGESaMPIE. 0)-P(vw) |
3 if ¢ existsthen return Ses RangeSample. () :

As in the sum case, we can amplify the probability of succesd t d) by taking the median of

O(log 1/9) repetitions of the data structure (based on different hasttions).

Theorem 3.3.6. For any integral decay function f, it is possible to answeelgs fore-approximate
@-quantiles and frequent items queries using the sketctimia @logM + (1/£2)log(Wmax/€)). The
expected time for each update igsl@yw(log(1/€) +logw+ logtmax) ). The space complexity is
O((1/€?)(10gWrmax-+ 10gidmay))-

Proof. The expected time for each update and the space complexégtlgti follows from Theo-
rem3.3.2 Now we show how to reduce a sequence of problems to instaricedectivity estimation.
To answer the query for the aggregate of interest, we firsttfindappropriate weighted sam@ein

logM time, where/ is defined (as before) as the smallest integer suchtkat.

e Rank. A rank estimation query for a valueasks to estimate the (weighted) fraction of elements

whose valuer is at mostv. This is encoded by a predicae, such that,(vw) =1if v<v,

else 0. Clearly, this can be solved using the above analyisagditive error at most.

e Median. The median is the item whose rank is 0.5. To find the median,amesortS, by value
in O(tlogT) time, then evaluate the rank of every distinct value in thee and return the
median ofS, as the median of the stream with an additioBaf logwnay) time cost. Due to the
argument about the rank estimation, we have that the medi&n lvas a rank of 0.5 over the

stream with additive error at mostwith probability at least + o.

e Quantiles. Quantiles generalize the median to find items whose rankmatéples of ¢, e.g.
the quintiles, which are elements at ranks 0.2, 0.4, 0.6 aéhdX@ain, sortS by value and return
the g-quantile ofS as thep-quantile of the stream with additive error at mestith probability

at least - 8. The argument is similar to the one for the median.
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e Frequent items. SortS in O(tlogT) time, then evaluate the frequency of every distinct value
in S with anotherO(Tlogwmax) time cost. We can return those values whose frequengy is
@ or more as the frequent items in the stream, because for eagined valuey, regarding the
predicate P_,(v,w) = 1 if v=v”, the selectivity ofv, which is also the frequency of, in the

stream isp or more with additive error at mostwith probability at least 1 .

3.4 Decomposable Decay Functions via Sliding Window

3.4.1 Sliding Window Decay

Recall that a sliding window decay function, given a windaredV, is defined ady (w,x) = w
if x <W, and fyy(w,Xx) = 0 otherwise (Sectiod.4.1). As already observed, the sliding window decay
function is a perfect example of an integral decay functanmg hence we can use the algorithm from
Section3.3. We can compute the expiry time of any elemeratt level/ in logw time as(t +W) if
Aﬁ > 0;t, otherwise. We can prove a stronger result though: If wef 6gtx) = w for all x > 0 when
inserting the element (i.e., elememhever expires at level) unlessA, < 0, and discard the element
with the oldest timestamp when the sample is full, we can kesgipgle data structure that is good for
anysliding window siza/V < c, where anyV can be specified after the data structure has been created,

to return a good estimate of the aggregates.

Theorem 3.4.1. Our data structure can answer sliding window sum and seliggtqueries where the
parameter W is provided at query time. Precisely, for O(1/£?) and M = O(logWiax+ 10gidmax),
we can provide an estimaté of the sliding window decayed sum, V, such @& — V| < eV] > 2
and an estimat&) of the sliding window decayed selectivity, Q, such m@é— Ql<egl> :% The

time to answer either query is(@gM + 1).

Proof. Observe that for all parameterg, at any levell, over the set of elememt= (v,w,t,id) where
AL > 0, the expiryorder is the samekg; expires beforey if and only ift; <t,. So we keep the data
structure as usual, but instead of aggressively expiramgst we keep the most recent items at each

leveli asS. Lett; denote the largest timestamp of the discarded items froel ieWVe only have to
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(@) (b) ()

Figure 3.3 Reduction of a decomposable decay function dingliwindow: (a)
a sample decay function (b) breaking the decay function sfitting
windows every time step (c) computing sliding windows ordy the
subset of stored timestamps.

updateS when a new itene with AL > 0 arrives in level. If there are fewer tham items at the level,
we retain it. Otherwise, we either reject the new iterh i t;, or else retain it, eject the oldest item
in the S, and updaté; accordingly. For both sum and selectivity estimation, we fime lowest level
where no elements which fall within the window have expirdtlis-is equivalent to the level from
before. From this level, we can extract the sample of itemiglwvfall within the window, which are
exactly the set we would have if we had enforced the expirgsinHence, we obtain the guarantees
that follow from Theorem8.3.4and3.3.5

At the time of the query, for the selected sample, we needrpcibe the contribution of each range
to the aggregate — this can be done through a call to the Rang@& routine. We can make the query
time smaller at the cost of increased processing time parazie(but the same asymptotic complexity
for the processing time per element) by calling the RanggBamoutine during insertion, and not
needing to recompute this at the query time. This yields #wred time complexity of processing an

element and of the query time. O
Similarly, we can amplify the probability of success(tb— d) by taking the median o®(1/d)

repetitions of the data structures, each of which is basatiffament hash functions.

3.4.2 Reduction from a Decomposable Decay Function to Sliaj Window Decay

In this section, we show that for any decomposable decayimof the formf (w,x) = w-g(x), the
computation of decayed aggregates can be reduced to theutatiop of aggregates over sliding win-

dow decay. This randomized reduction generalizes a (detestm) idea from Cohen and Straugil):
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rewrite the decayed computation as the combination of mhding window queries, over different

sized windows. We further show how this reduction can be diorgime-efficient manner.

Selectivity Estimation

Lemma 3.4.1. Selectivity estimation using any decomposable decayifunétw,x) = w- g(x) can be

rewritten as the combination of at md&t sliding window queries, where c is the current time.

Proof. Let the set of distinct observations in the stream (now dobie timestamps) b® = (e =

(v1,w,t1,id1), € = (V2,Wa,tp,id2), ..., € = (Vn,Wn,tn,idn)). The decayed selectivity &f at timec

Q= w-P(v,w)-g(c—t)/ w-g(c—t), (3.4)

(vwit,id)eD (vwit.id)eD
This can be rewritten & = A/B where,

tn

Azg(c—tl)_iWiP(Vi,Wi)Jr ([Q(C—t)—g(c—t+1)]' P(VhWi)Wi)

t=t+1 {iti>t}

B:g(c_tl)_iWH‘ tz ([g(c—t)—g(c—t+1)]~ D Wi)
i= t=t;+1 {iti>t}

We computeA andB separately; first, consid&, which is equivalent t&/, the decayed sum under
the functionw- g(x). Write VWV for the decayed sum under the sliding window of si¥e We can
computeV = z:”:tﬁl([g(c—t) —g(c—t+1)]-Ve), using the sliding window algorithm for the sum
to estimate eack'®™, fromt =t; + 1 till t,. We also addy;wi)g(c—t1), by trackings;w; exactly.
Applying our algorithm, each sliding window quew" is accurate up to &L+ €) relative error with
probability at least - §, so taking the sum oft, —t;) < ¢ such queries yields an answer that is
accurate with &1+ ¢) factor with probability at least 4 cd, by the union bound. Similarlyh can also
be computed by using the sliding window algorithm for the situarther, the data stream over which
Ais computed is a substream, which satisfies the selectivégipate, oD, over whichB is computed.
Thus theoren8.4.1implies each sliding window query iA is accurate up to &+-€V) additive error

with probability at least 6. This analysis further yields an estimate fowith the accuracy up to

(+£eV) additive error with probability at least-1cd. Combining the estimates férandB and using
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T =0(1/€?), we get|Q — Q| < £ with probability at least1— 2cd), whereQ' is the estimate of/B.
To give the required overall probability guarantee, we cdjust & by a factor of 2. Since the total
space and time taken depend only logarithmically @t,1scalingd by a factor of 2 increases the

space and time costs by a factor@flogc). O

Theorem 3.4.2.We can answer a selectivity query using an arbitrary decaaple decay function

f(w,x) =w-g(x) in time OMtlog(™!)log(Mtlog ™)) to findQ so thatPr{|Q — Q| > ] < 8.

Proof. Implementing the above reduction directly would be too sld@pending linearly on the range
of timestamps. However, we can improve this by making sonsemations on the specifics of our im-
plementation of the sliding window sum. Observe that singeatgorithm stores at mosttimestamps

at each oM levels. So if we probe it with two timestamps< tx such that, over all timestamps stored
in the § samples, there is no timestarhpuch that; <t <t, then we will get the same answer for
both queries. Let'gj denote thgth timestamp in ascending order$h We can compute the exact same

value for our estimate of3(4) by only probing at these timestamps, as:

M S . " i
53 (oot oot Ve 35
1= ]:

tf <ty

where for 0< i < M, t™" denotes the smallest (oldest) timestamp of the iten&, iandt™" = c+ 1,
wherec is the current time (this avoids some double counting igsu€his process is illustrated in
Figure 3.3 we show the original decay function, and estimation atialestamps and only a subset.
The shaded boxes denote window queries: the length is tg/8inf the query, and the height gives
the value ofg(c—t}) —g(c—t/ ™).

We need to keepp = Iog% independent copies of the data structure (based on différ@sh
functions) to give the required accuracy guarantees. Weema query by taking the median of the
estimates from each copy. Thus, we can generate the answanllbgting the set of timestamps
from all b structures, and working through them in sorted order ofiregeln each structure we can
incrementally work through level by level: for each subsaguimestamp, we modify the answer from

the structure that this timestamp originally came from ¢éitler answers stay the same). We can track

the median of the answers in tin@logb): we keep théb answers in sorted order, and one changes
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Figure 3.4 Decayed Sum: Accuracy vs &= 0.05)

each step, which can be maintained by standard dictionaey steuctures in timeé(logb). If we
exhaust a level in any structure, then we move to the next &we find the appropriate place based
on the current timestamp. In this way, we work through eadh daucture in a single linear pass,
and spend tim&(logb) for every time step we pass. Overall, we have to collect amdG®@vitb)
timestamps, and perfor@(Mtb) probes, so the total time required is boundedXji Tblog(Mtb)).

This yields the bounds stated above. O

Once selectivity can be estimated, we can use the same i@tiess in the sliding window case

to compute time decayed ranks, quantiles, and frequensijtgielding the same bounds for those

problems.

Decayed Sum Computation We observe that the maintenance of the decayed sum overajener

decay functions has already been handled as a subprobléin sélectivity estimation.

Lemma 3.4.2. The estimation of decayed sum using an arbitrary decompeskdzay function can be

rewritten as the combination of at most ¢ sliding window éegrwhere c is the current time.

Theorem 3.4.3.We can answer a query for the sum using an arbitrary deconipesiecay function

f(w,x) =w-g(x) in time QM log(M7)log(Mtlog(M"))) to findV such thaPr[V —V| > V] < &].

3.5 Experiments

In this section, we experimentally evaluate the space and tosts of the sketch, as well as its

accuracy in answering queries. We consider three populegral decay functions: sliding window
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decay, and modified versions of polynomial and exponenéehyg. The decay functions are defined as
follows:

(1) Sliding window decay with window siz@/: fy(w,x) = w if x <W, and O otherwise. We
experiment over a range of window sizes, ranging from 200rs#xto 25 hours.

(2) Polynomial decayf (w,x) = LWJ We usea € {1.0,1.5,2.0,2.5,3}

(3) Exponential decayf (w,x) = {%J We usef € {0.01,0.2,0.4,0.6,0.8}

We perform the experiments for the time decayed sum as wtikatime decayed selectivity. Note

that selectivity estimation generalizes the problems tifmeging therank, @g-quantilesandfrequent

elementgTheorem3.3.6.

Results Our main observations from the experiments are as followst, Ehe actual space used
by the sketch can be much smaller than the theoreticallyekktounds, while the accuracy demand
for estimation is still met. Next, the sketch can be updatadldy in an online fashion, allowing for

high throughput data aggregation.

3.5.1 Experimental Setup

We implemented the sketch and the RangeSample algorémin( C++, using gcc 3.4.6 as the
compiler and making use of data structures from the startéanglate library (STL). The space usage
is reported in terms of the number of nodes present in thelslegter the data stream is processed. The
input stream is generated from the log of web request reamtiiscted on the 58th day of the 1998
World Cup {8), and has 32355332 elements, of which 2498 894 are distinct. All experiments

were run on a 2.8GHz Pentium Linux machine with 2GB memory.

Data Preparation For repeatability, we present the transformation we paréat on the original
data set from the 1998 World Cup. Note that these transfeomsagre not part of the sketch that we
have designed, and are only used to create the experimaptgki Each web request recards a
tuple:

(timestampclientD, ob ject|D, size methodstatusty pe serveiy. All the records are archived i)

in the ascending order of th@anestampwhich is the number of seconds since the Epoch. Our goal
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is to transform the set of records into a data stream whictagaschrony in the timestamps and has a
reasonable percentage of duplicates.

STEP 1: Project eachto a stream elememt= (v,w,t,id). (1) eid = r.timestamp mod 86400+
r.clientiD mod 100+ r.serverlD mod 100. Note that “+” is the string concatenation, thaig.x =
863999 999. The timestamp is taken modulo 86400 since all the datalliscted from a single day.
Binding
(rtimestampr.clientID,r.serve) together intce.id results in the stream having a reasonable percent-
age of duplicates, because at a certain point of time, thdruof web requests between a given pair of
client and server is very likely to be one, or a number sliglatiger than one. (®.v=r.size mod 10.
(3)ew=r.objectID mod 1&, hencewmax= 999. (4)eit = r.timestamp mod 86400.

STEP 2: Make the duplicates consistent. Note that the datplicfrom Step 1 may differ in either
w orv. We sort the stream elements in ascending ordé ¢fience also in increasing ordertdf then
replace the duplicates with the first copy.

STEP 3: Create the asynchrony. We divide the stream intoipteulsubstreams, such that the
elements in each substream have the sseneer Then we interleave the substreams into a new stream
as follows. We remove the first element of a randomly selentedempty substream and append it
into the new stream, until all the substreams are empty.

STEP 4: Create thprocessing timef each stream element. Sineet and theprocessing time
determine the decayed weight@fvhen it is processed, every stream element needs to havartiee s
processing timén a repetition of any experiment. Thwocessing timef e is generated as follows:
(1) Pidelay=i] = % i €{0,1,2}. (2) If the processing time of the previous element is lathan
that of the current stream element, we assign the processiegf the previous element to the current
element, as the processing time must be non-decreasing.tiNdtwhenever we receive a query for the
aggregate of interest, we assume the current clock timay(dimee) is the processing time of the most

recently processed stream element.

3.5.2 Accuracy vs Space Usage

Recall that the theoretically derived sample sizéiﬁ)r ang-approximation (with probability> :%)

of the time decayed sunC(= 60, TheorenB.3.4 and the time decayed selectivitg & 492, Theo-
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rem3.3.5. However, in the course of our experiments, we found thatddsired accuracy could be
achieved using much smaller values®{and hence much smaller space) than the theoretical predic-
tion.

Figure3.4, 3.5 3.6 and 3.7, shows the influence @& on the accuracy of estimations of the sum
and the selectivity. In these experiments wesset0.05a = 1, f = 0.01 andw = 200 seconds. We
use the following three predicates for selectivity estiorat (1) Py (v,w) = 1, if v/w > 2; otherwise, 0.
(2) P(v,w) =1, if v/w > 3; otherwise, 0. (33(v,w) = 1, if v/w > 4; otherwise, 0.

With each time decay model and each valueGpwe perform 10 experiments estimating the sum
over the whole stream (FiguBe4). Each dot in these figures represents an estimate for the Ehen
x-axis of the dot is the value f&@ used in the experiment and the y-axis represents the relatror in
the estimate for the sum. The lower bound and upper bouns iimeach figure set up the boundaries
between which the dots are tleapproximations. Similarly, for each decay model, eacluedbr
C and each predicate, we perform 10 experiments estimatimgelectivity over the whole stream
(Figure 3.5, 3.6 and 3.7), whereas the y-axis of each dot is the additive error in Signate for the
selectivity.

Figure3.4, 3.5, 3.6and3.7first show that not surprisingly, a larg€ryields more accurate estima-
tors for both sum and selectivity. The second observatidhateven a value as low &= 2 is good
enough to guarantee @rapproximation of the sum with probability % whereaC = 1 is sufficient
in the case of the selectivity (for the predicates we comsit)e The second observation gives a crucial
indication that in the real applications of this sketch, #lctual value folC can be much smaller than
the theoretical predictions.

We next studied the influence Gfon the sketch size using four different decay functions g Fi
ure 3.8 Besides the exponential decay and polynomial decay, fachadn, 3 are assigned the same
values as in Figur8.4, 3.5and3.6, we also study the size of the sketch using the sliding windeeay
with window sizeW = 200 seconds and/ = 25 hours. Note that all the data in the experiments was
collected within a day, therefore the sketch using the djdvindow decay withV = 25 hours is a
general sketch, which has enough information to answerdiecayed sum or selectivity queries using
any decay model (Sectidh4.2. Figure3.8shows that a small&® can significantly reduce the sketch

size, e.g., ifC = 2, then the sketch size is about 10KB, whereds i 20, the sketch size is about
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100KB. Figure3.8also shows that for the same value @rthe sliding window folV = 25 hours takes
the most space, which is reasonable, since it can answerdhddst class of queries.

Overall, compared with the size of the input (over 32 miljiothe sketch size is significantly
smaller. Note that the sketch size is independent of thet isiga, meaning even if the input is larger,
the sketch will not be any larger, as long as the desired acguemains the same. Small sketch size
is crucial for the sensor data aggregation scenario sirecertargy cost in the data transmission within
the network can be significantly reduced by transmitting gketches between nodes rather than the

whole data.

3.5.3 Time Efficiency

In this section, we present experimental results for the tiaken to update the sketch for different
decay functions and parameter settings. We report the ingdsteed in terms of the number of stream
elements processed per second. Our experiments demertkimabverall, the sketch can be updated
quickly (in the order of 10,000 updates per second).

Figure3.9(a)shows the time (in seconds) taken to update the sketch famexpial decay, poly-
nomial decay and sliding window decay. It shows that & 60, the sketch can handle about 15000
elements per second. @f = 2, the speed of updating is more than doubled, since a sn@alleids a
smaller sketch (as shown in Figu8eB), and smaller the sketch, faster are the operations on #telsk
Similarly, a higher accuracy demand (a sma#igslows down the sketch update (Figu@(b).

Both Figures3.9(a)and 3.9(b) show that the sketch using polynomial decay has the highmest t
efficiency, whereas the sketch using the sliding window ydws the lowest time efficiency. This
may come as a surprise, since exponential decay is oftemdeoed to be the “easiest” to handle, and
polynomial decay is thought to be “harder”. The reasons torresults are the parameter settings that
we used for exponential and polynomial decay, and the bigidn of the processing delays. In the
experiments shown, we set= 1.0, causing a rather “fast” polynomial decay, ghe- 0.01, causing a
rather “slow” exponential decay. Of course, even with thesttings, exponential decay will still cause
the weights to decay “faster” than polynomial decay for vy elements, which are being processed
long after they were generated. Due to the way we construeiedput, the processing delay of most

stream elements were within 3 seconds. As a result, for niastemts, when they are processed, their
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weight in polynomial decay was smaller than their weightxpanential decay, and their weight in
sliding window decay was the largest. Since a smaller detayght implies an insertion into fewer
samples, and the cost of computing the expiry time for a@adi level is the same for all three decay
models, polynomial decay resulted in the fastest procggsime, while sliding window decay (with
window size 200 seconds) led to the slowest processing time.

In general a sketch working with a decay function that deéfaster”, i.e., a larger value fox
and 3 in polynomial decay and exponential decay respectivelya smaller value foW in sliding
window decay, has better time efficiency, because a “fasliecay function makes the weight of the el-
ement smaller, hence fewer insertions are performed ork#tets This is shown in Figur@10(a)and
3.10(b) where for either exponential decay or polynomial decag,tiime efficiency increases as the
decay becomes faster. However, at the first glance, thig ihe@ase for the sliding window decay dis-
played in Figure8.10(c) and the update speed does not seem to change significatitpwwi his is be-
cause in our experiments the ages of most elements at theigsing time are no more than the small-
est window size considered, 200 seconds, therefore thgel@eeeights of an element at its processing
time using the sliding window decay of different window sizZ&/ € {200,400 600 800,1000}) are

the same (equal to the original weight).

3.6 Concluding Remarks

In this chapter, we have presented a powerful result. Theissea single sketch that allows
duplicate-insensitive, distributed, and time-decayemmatation of a variety of aggregates over asyn-
chronous data streams. This sketch can accommodate agyaintiecay function, or any decompos-
able decay function via the reduction to sliding window dedeor the class of decomposable decay
functions, the decay function need not even be known a pead can be presented at query time.

We experimentally show that the actual space needed by @ttehskan be significantly smaller
than theoretical predictions, while still meeting the aacy demands. Our experiments confirm that

the sketch can be updated quickly in an online fashion, atigior high throughput data aggregation.

www.manaraa.com



85

CHAPTER 4. General Time-decay Based Correlated Processing

Data stream analysis frequently relies on identifying elations and posing conditional queries
on the data after it has been se@urrelated aggregateform an important example of such queries,
which ask for an aggregation over one dimension of streamezi¢s which satisfy a predicate on
another dimension. Since recent events are typically nrmopeitant than older onetime decayshould
also be applied to downweight less significant values. Thépter presents space-efficient algorithms
as well as space lower bounds for the time-decayed cordetat, a problem at the heart of many
related aggregations. By considering different fundaweciasses of decay functions, we separate
cases where efficient approximations with relative erraadititive error guarantees are possible, from
other cases where linear space is necessary to approximmaparticular, we show that no efficient
algorithms with relative error guarantees are possibléterpopular sliding window and exponential
decay models, resolving an open problem. This negativdtresithe exponential decay holds even
if the stream is allowed to be processed in multiple passés. résults are surprising, since efficient
approximations are known for other data stream problemerutitbse decay models. This is a step
towards better understanding which sophisticated queaasbe answered on massive streams using

limited memory and computation.

4.1 Introduction

There has been much research on estimating aggregatessadorgle dimension of a stream, such
as the median, frequency moments, entropy, etc. Howevest sh@ams consist of multi-dimensional
data. An example stream of VoIP call data records (CDRs) naag the call start time, end time, and
packet loss rate, along with identifiers such as source astihddon phone numbers. It is imperative

to compute more complex multi-dimensional aggregates@sally those that can “slice and dice” the
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data across some dimensions before performing an aggregptssibly along a different dimension.
In this chapter, we consider sucorrelated aggregateswhich are a powerful class of queries for
manipulating multi-dimensional data. These were motiyaethe traditional OLAP modell@), and
subsequently for streaming da& 40). For example, consider the query on a VolP CDR stream: “what
is the average packet loss rate for calls within the last 2dshthat were less than 1 minute long”? This
qguery involves a selection along the dimensions of call tibmaand call start time, and aggregation
along the third dimension of packet loss rate. Queries sffttim are useful in identifying the extent
to which low call quality (high packet loss) causes cust@merhang up. Another example is: “what
is the average packet loss rate for calls started withinabed4 hours with duration greater than the
median call length (within the last 24 hours)?”, which giwestatistic to monitor overall quality for
“long” calls. Such queries cannot be answered by existirgasting systems with guaranteed accuracy,
unless they explicitly store all data for the last 24 hoursiclv is typically infeasible.

In this chapter, we present algorithms and lower boundsgpraimating time-decayed correlated
aggregates on a data stream. These queries can be captuledeognain aspects: selection along one
dimension (sayx-dimension) and aggregation along a second dimensiony{dayension) using time-
decayed weights defined via a third (time) dimension. The-itacay arises from the fact that in most
streams, recent data is naturally more important than ad&, and in computing an aggregate, we
should give a greater weight to more recent data. In the elegbove, the time decay arises in the
form of a sliding window of a certain duration (24 hours) otlee data stream. More generally, we
consider arbitrary time-decay functions which return aglieifor each element as a non-increasing
function of its age—the time elapsed since the element wasrgted. Importantly, the nature of the
time-decay function will determine the extent to which tiggr@egate can be approximated.

We focus on thdime-decayed correlated sufhenceforth referred to as DCS), which is a funda-
mental aggregate, interesting in its own right, and to wiittter aggregates can be reduced. An exact
computation of the correlated sum requires multiple patisesigh the stream, even with no time-
decay where all elements are weighted equally. Since weftznd anly a single pass over the stream,
we will aim for approximate answers with accuracy guarasitde this chapter, we present the first
streaming algorithms for estimating the DCS of a streamguismited memory, with such guarantees.

Prior work on correlated aggregates either did not haveracgwyuarantees on the resuld€) or else
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did not allow time-decayf). We first define the stream model and the problem more pihgcised

then present our results.

4.1.1 Problem Formulation

Data Stream. We consider an asynchronous streanivoiv,t) tuples, which is projected on the dimen-
sions ofvalueweightandtimefrom the streanR defined in Sectiod.3. When the context is clear, we
still useR= ey, e,..., e, to represent the projected stream, iee= (vi,w;,t;). Let[m ={0,1,...,m}
denote an ordered domain wheres drawn from. An example data stream from applications ¢hat
be captured by this data stream model is the stream of VolPezalrds. There is one stream element
per call, wherd; is the time the call was placed, is the duration of the call, and; the packet loss

rate.

Time decay. We consider aggregates that are time-decayed. The decayjghtwf a stream element
is returned by a user specified decay functfdw, x), which take as input the initial weight and age

x = c—t of the element, as defined in Sectibd. Note thatc denotes the current time. In this chapter,
we only consider decomposable decay functions which ha®theof f (w,x) =w-g(x), as defined in

Sectionl.4.2

Time-Decayed Correlated Sum.The query for the time-decayed correlated sum over stieamder
a prespecified decomposable decay-funcos posed at time, provides a parametar> 0, and asks

for &, defined as follows:

A correlated aggregate query could be: “What is the averagkat loss rate for all calls which started
in the last 24 hours, and were more than 30 minutes in lengtiPis query can be split into two
sub-queries: The first sub-query finds the number of streemeaits(v;,w;, t;) which satisfyv; > 30,
andt; >t — 24 wheret is the current time in hours. The second sub-query finds thredafw;s for all
elementqvi,w;, t;) such that; > 30 andt; >t —24. The average is the ratio of the two answers.

DCS lies at the heart of many other aggregates. Exampledauayed aggregates that can reduced

to DCS are the following:

o Thetime-decayedyrelative frequenof/a valuev, which is given by(S} — S, ;)/S.
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e Thesum of time-decayed weighibelements in the rangé r], which is§ — . ;.

e Thetime-decayed frequenaf rangell, r], which is(§-5, ;) /S5

e Thetime-decayedp-heavy hitterswhich are all the/s such that the time decayed relative fre-
quency ofv is at leastp.

e Thetime decayed correlateg-quantile which is the largest, such tha{S — )/ < ¢.

Time-Decayed Correlated Count.An important special case of DCS is ttime-decayed correlated
count(henceforth referred to as DCC), where all the weightare assumed to be 1. The correlated

countC¥ is therefore:

4.1.2 Contributions

Our main result is that there exist small space algorithmsyproximating DCS over an arbitrary
decay functiong with a smalladditive error. But, the space cost of approximating DCS with a small
relative error depends strongly on the nature of the decay functitis-¢ possible on some classes of
functions using small space, while for other classes, dioly sliding window and exponential decay,

this is provably impossible in sublinear space. More spedlfi, we show:

1. Foranydecay functiorg, there is a randomized algorithm for approximating DCS Witinded
additive error guarantee which uses space logarithmicaisitte of the stream. This significantly
improves on previous worlQ), which presented heuristics only for sliding window ded@ec-
tion 4.3.)

2. On the other hand, for arinite decay function, defined in Sectidn4.1, we show that approx-
imating DCS with a smaltelative error needs space linear in the size of the elements whose
ages are not larger than the age limit of the decay functi@taBse sliding window decay is a
finite decay function, the above two results resolve the gpeblem posed ing), which was
to determine the space complexity of approximating theetated sum under sliding window

decay. (Sectiod.4.])
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3. For any non-exponential converging decay function, deffim Sectionl.4.], there is an algo-
rithm for approximating DCS to within a small relative ernesing space logarithmic in the
stream size, and logarithmic in the “rate” of the decay fiorct(Sectiord.3.2)

4. For any exponential decay function and super-exporetg@ay function, defined in Sectidm4. ],
we show that the space complexity of approximating DCS w#imall relative error is linear in
the stream size, in the worst case, even if multi-pass psoug®f the stream is allowed. This
may be surprising, since there are simple and efficientisolsitfor maintaining exponentially

decayed sum exactly in the non-correlated case. (Se4ibB

We evaluate our techniques over real and synthetic datadtioBel.5, and observe that they can

effectively summarize massive streams in tens of kilobytes

4.2 Prior Work

Concepts of correlated aggregation in the (non-streamig)P context appear in@). The first
work to propose correlated aggregation for streams wask8eheal. (40). They assumed that data was
locally uniform to give heuristics for computing the nonedged correlated sum where the threshold
(1) is either an extrema (min, max) or the mean of the all theivedevalues ¥;'s). For the sliding
window setting, they simply partition the window into fixéehgth intervals, and make similar unifor-
mity assumptions for each interval. No strong guaranteeherahswer quality are provided by any
of these approaches. Subsequently, Ananthakrighr. (6) presented summaries that estimate the
non-decayed correlated sum walditive errorguarantees. The problem of tracking sliding window
based correlated sums with quality guarantees was givem @gem problem ing). We show that this
relative error guarantees are not possible while usinglspate, whereas additive guarantees can be
obtained.

Xu et al. (79) proposed the concept of asynchronous streams. They gavelamized algorithm
to approximate the sum and the median over sliding windowsscB and Tirthapurald) later gave
a deterministic algorithm for the sum. Cormoelieal. (30; 25) gave algorithms for general time de-
cay based aggregates over asynchronous streams. By ddfimexiamps appropriatelpon-decayed

correlated sum can be reduced to the sum of elements witHidiagswindow over an asynchronous
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stream. As a result, relative error bounds follow from bauimd(79; 14; 30; 25). But these methods do
not extend to accurately estimating DCS or DCC.

Dataret al. (35) presented a bucket-based technique cadlgzbnential histogramf®r sliding win-
dows on synchronous streams. This approximates countsetatdd aggregates, such as sum gnd
norms. Gibbons and Tirthapurd2d) improved the worst-case performance for counts using a dat
structure called avave Going beyond sliding windows, Cohen and Straudl formalized time-
decayed data aggregation, and provided strong motivaxiaggles for non-sliding window decay. All
these works emphasized the time decay issue, but did natleorise problems of correlated aggregate

computation.

4.3 Upper Bounds

In this section, we present algorithms for approximatingdver a streanR. The main results
are: (1) For an arbitrary decay functigpthere is a small space streaming algorithm to approximate
<! with a small additive error. (2) For any non-exponentiahvergingdecay functiorg, there is small

space streaming algorithm to approxim&fewith a small relative error.

4.3.1 Additive Error

A predicateP(v,w) is a binary function ofs andw, used to select certain items. For example, (1)
the predicate could select only those items witly 1000 by returning 1 for those items, and 0O for
others; (2) the predicate could select only those items with 100 similarly; and (3) the predicate
could select only those items with both> 1000 andv < 100, and so on. The time-decayed selectivity

Q of a predicateéP(v,w) on a streanR of (v,w,t) tuples is defined as

Y vwt)erP(VW) -w-g(c—t)

Q=
Z(v,wt)eRW' g(C— t)

The decayed suiis defined as:

S= Z w-g(c—t)

(vwit)eR
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Note thatS= % We use the following results on time-decayed selectivitiyneation from ChapteB

in our algorithm for approximating DCS with a small additeeor.

Theorem 4.3.1(Theorems3.4.1, 3.4.2 3.4.3. GivenO < € < 1 and probability0 < d < 1, there exists

a small space sketch of sizé(@/£?) -log(1/d) -logM) that can be computed in one pass from stream
R, where M is an upper bound on S. For any decay function g gveguery time: (1) the sketch can
return an estimat& for S such tha®r|S— S < €5 > 1— 3. (2) Given predicate B, w) at query time,

the sketch gives an estima@efor the decayed selectivity Q, such IM]Q— Ql<egl>1-2.

The sketch designed in Chaptgrcan be thought of as computing a set of fixed-sized random
samples of the stream. Each successive sample is chosedagitbasing probability, so for a unit-
weight stream element, its probability of selection in eagtcessive sample is%, %, .... For non-unit
weight elements, the probability of selecting a stream el@nmto the sample is also proportional to
the decayed weight of the element. The result stated in theeaiheorem allows DCS to be additively

approximated:

Theorem 4.3.2. For an arbitrary decay function g, there exists a small spaketch of R that can be
computed in one pass over the stream. At any time instargn givthresholdr, the sketch can return
§, such that\é? -9 < sﬁ with probability at leastl — 6. The space complexity of the sketch is
O((1/€?)log(1/d) -logM), where M is an upper bound o1§.S

Proof. We run the sketch algorithm in Chapton streanR, with approximation errog /3 and failure
probability 5/2. Let this sketch be denoted by". Where the functiorg is implicit, we can drop it
from our notation, and simply writg;, Sy in place of§, S respectively.

Given T at query time, we define a predicd®efor the selectivity estimation a®(v,w) = 1, if

v > 1, andP(v,w) = 0 otherwise. The selectivity &f is Q = S;/S. Then.#" can return estimated of

Q andSof Ssuch that
P £ o
_ “l<1-Z )
Pr[|Q Ql> 3] <1-3 4.1)
~ eS o
_ g B )
Pr{]s S > 3]_1 > 4.2)

QuikestimatSqisgivenbySy— S Q. From @.1) and @.2), and using the union bound on probabilities,
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we get that the following events are both true, with prohigbit least 1- o.

€ ~ €
Q—§ <Q SQ+§ 4.3)
€ PN €
s(1-3) =8 =s(1+3) (4.4)
Using the above, and usif@= S;/S, we get
~ S B Se e &2
S < <§+5/3> -S-(1+8/3)—Sr+?+8<§+§> <5 +ES

In the last step of the above inequality, we have used theSfastSande < 1. Similarly, we get
that if (4.3 and @.4) are true, thenS; > S; — €S, thus completing the proof thax” can (with high
probability) provide an estima® such tha{S} — J| < £ O

An important feature of this approach, made possible dubddléxibility of the sketch in Theo-
rem4.3.1 is that it allows the decay functianto be specified at query time, i.e. after the strdahmas
been seen. This allows for a variety of decay models to baeappi the analysis of the stream after
the fact. Further, since the sketch is designed to handlgchsynous arrivals, the timestamps can be

arbitrary and arrivals do not need to be in timestamp order.

4.3.2 Relative Error

In this section, we present a small space sketch that can beainad over a strearR with the
following properties. For an arbitraigonvergingdecay functiorg (defined in Sectiol.4.1), which is
known beforehand, and a parametevhich is provided at query time, the sketch can return amedé
§ which is within a small relative error &. The space complexity of the sketch dependsg.on

The idea behind the sketch is to maintain multiple data &iras each of which solves the unde-
cayed correlated sum, and partition stream elements adifte®nt data structures, depending on their
timestamps, following the approach of the Weight-Basedditer Histogram (WBMH), due to Cohen
and Strauss21). In the rest of this section, we first give high level intaitj followed by a formal
description of the sketch, and a correctness proof. Finallydescribe enhancements that allow faster

insertion of stream elements into the sketch.
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New
bu‘cket merge merge
bob; b, by b, age bob; b, by b, age Pob; by by b, age
(a) Regions (b) Buckets & Regions (c) Buckets & Regions after Merge

Figure 4.1 Weight-based merging histograms.

4.3.2.1 |Intuition

We first describe the weight-based merging histograf). (The histogram partitions the stream
elements into buckets based on their age. Given a decayidorg;tand parameteg;, the sequence
bi,i > 0 is defined as followsbg = 0, and fori > 0, b is defined as the largest integer such that
g(bi—1) >g(bi_1)/(1+ &) (Figure4.1(a).

For simplicity, we first describe the algorithm for the casa strictly synchronous stream, where
the timestamp of a stream element is just its position in tream. We later discuss the extension to
asynchronous streams. L@t denote the intervalb;, b, 1) so that|G;| = bi;1 — bj. Once the decay
function is given, theG;s are fixed and do not change over time. The elements of thenstase
grouped into regions based on their age. iIE®10, regioni contains all stream elements whose age lies
in interval G;.

For anyi, we haveg(b;) < g(bo)/(1+ &1)', and thus we get< logy ., ¢, (9(0)/g(bi)). Since the age
of an element cannot be more tharb; < n. Thus we get that the total number of regions is no more

than = [log, ,, (9(0)/g(n))]. From the definition of thé;s, we also have the following fact.

Fact 4.3.1. Suppose two stream elements have agesnd & so that g and & fall within the same

region. Then,

1 _9@)
1+& ~ 9(a)

«Q

<l+g

The data structure maintains a sebotkets Each bucket groups together stream elements whose
timestamps fall in a particular range, and maintains a sgpalte summary of these elements. We say
that the bucket is “responsible” for this range of timestar(gr equivalently, a range of ages).

Suppose that the goal was to maint%just the time-decayed sum of all stream elements. If the
current timec is such that modb; = 0, then a new bucket is created for handling future elements

(Figure4.1(b). The algorithm ensures that the number of buckets doesmat o large through

www.manaraa.com



94

the following rule: if two adjacent buckets are such thatdlge ranges that they are responsible for
are both contained within the same region, then the two he@e merged into a single bucket. The
count within the resulting bucket is equal to the sum of thent® of the two buckets, and the resulting
bucket is responsible for the union of the ranges of timeptathe two buckets were responsible for
(Figure4.1(c).

Due to the merging, there can be at mg8ttickets: one bucket completely contained within each
region, and one bucket straddling each boundary betweenregions. From Fact.3.1, the weights of
all elements contained within a single bucket are close ¢b ether, and sincgis a converging decay
function, this remains true as the ages of the elementsasereConsequently, WBMH can approximate
Sg with &, relative error by treating all elements in each bucket dseytshared the smallest timestamp
in the range, and scaling the corresponding weight by tlad tount.

However, this does not solve the more general DCS problaeme st does not allow filtering out
elements whose values are smaller thhaiVe extend the above data structure to the DCS problem by
embedding within each bucket a data structure that can ariee§undecayed) correlated sum of all
elements that were inserted into this bucket. This datztstrel can be any of the algorithms that can
estimate the sum of elements within a sliding window on algmmous streams, including the sketch
designed in Chaptét and in @5; 14): values of the elements are treated as timestamps, anddawin
sizem— 1+ 1 is supplied at query time (whemais an upper bound on the value).

These observations yield our new algorithm for approxins?. We replace the simple count
for each bucket in the WBMH with a small space sketch, frorhezibne designed in Chapt2or in
(25). We will not assume a particular sketch for maintainingitifermation within a bucket. Instead,
our algorithm will work with any sketch that satisfies theldaling properties—we call such a sketch

a “bucket sketch”. Let, denote the accuracy parameter for such a bucket sketch.

1. The bucket sketch must concisely summarize a stredmwf pairs using space polylogarithmic
in the stream size. Given parameter 0 at query time, the sketch must return an estimate for
S v>1 W, such that relative error of the estimate is witlan

2. It must be possible to merge two bucket sketches easilyargingle sketch. More precisely,
suppose thas, is the sketch for a set of elemegsandS,; is the sketch for a set of elemelRRs,

thensitimustbe possible to merge togetBeandS; to get a single sketch denoted 8y S U S,
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such thaiSretains Propertyl for the set of element®; U Ry.

The analysis of the sketch proposed in Chaptexplicitly shows that the above properties hold. Like-
wise, the sketch designed i85) also has the necessary properties, since it is built on muithiple
instances of g-digest summariegl) which are themselves mergable. The different sketches hav
slightly different time and space complexities; we state amalyze our algorithm in terms of a generic

bucket sketch, and subsequently describe the cost degeodithe choice of sketch.

4.3.2.2 Formal Description and Correctness

Recall thate is the required bound on the relative error. Our algorithmmbsimes two data struc-
tures: the WBMH with accuracy parametgr= £/2; and the bucket sketches with accuracy parameter
& = £/2. The initialization is shown in theESBoUNDARIES procedure (Algorithml4), which cre-
ates the region§; by selectinghy, ...,bg. For simplicity of presentation, we have assumed that the
maximum stream length is known beforehand, but this is not necessary —kfgecan be gener-
ated incrementally, i.el; does not need to be generated until element ages excdadingave been
observed.

Algorithm 15shows the ROCESE€LEMENT procedure for handling a new stream element. When-
ever the current timesatisfies modb; = 0, we create a new bucket to summarize the elements with
timestamps fromi tot -+ b; — 1 and seal the last bucket which was created attiml;. The procedure
FINDREGIONS(t) returns the set of regions that contain buckets to be mergéohat. In the next
section we present novel methods to implement this reqenerefficiently. Algorithm16 shows the
procedure RTURNAPPROXIMATION which generates the answer for a query $rat timet. Each
bucket returns an estimate for the total undecayed weidghtiseoelements that were inserted in the
bucket and whose values are not smaller thalBach of these estimates is then scaled down by a factor
of the decay function value using the correspondingg as the parameter of the decay function. The

summation of these scaled estimates are returned as theesforS).

Theorem 4.3.3.1f g is a converging decay function, for arnygiven at any time t, the algorithm

specified in Algorithni4, 15and 16 can returnS? , such that(1 — &)Y < § < (14 &)

Proof, For the special converging decay function whgfe) = 1 (no decay), then WBMH has only
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Algorithm 14: SetBoundaries|
Task: createGo, Gy, ...,Gg usinge; = £/2 to initialize regions.

1 b —0;
2 for 1<i<pBdo by — max{x/(1+5)g(x—1) > g(bi_1)} ; /* X are integers */
3 j—-1; /* j is the index of the active bucket for new elements */

one region and one bucket. So the algorithm reduces to adingket sketch. This sketch can directly
provide ang, = £/2 relative error guarantee for the estimateShf

The broader case is whegéx + 1)/g(x) is non-decreasing with. Let {By,...,Bx} be the set
of sketch buckets at query tinte Let R, C R be the substream that was inserted iBfp1l <i < k.
Since every stream element is inserted into exactly onelshaicket at any time, thgs partitionR:
Ui‘lei =RandRNR; =0 if i # j. Note that merging two buckets just creates a new buckehtor t
union of the two underlying substreams. Iﬁg = Yeerlvy>tWjd(t — j) be the DCS oR at timet,
1<i<ksoS=yk, §, We first consider the accuracy of the estimate for Q’qmsing sketch
bucketB;, 1 <i <k.

For each\vj,wj, j) € R atany query time, sinceFg, < j < Lg, whichimpliesg(t—Fg) <g(t—j) <

g(t—Lg ), andg(t —Lg,)/(1+€1) < g(t — Fg,) (using Fac#.3.1), we have

wig(t— i) _ wig(t—Ls)

<wjg(t—Fg) <wjg(t—j)

1+ = 1+4
therefore,
1 . .
e 2 Wit-Dsot-Fe) > wi< 5 wglt-])
1e]‘ERi|VjZT gcRi|vi>T gcRi|vi>T
i.e.,
1
TS <9t-Fe)Q <S; whereQ = 5w, (4.5)
+éa gcR|vj>T

Also since sketch buckd; can returnQ; such that (Chaptez or (25))

(1-8)Q <Q < (1+&)Q (4.6)
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Algorithm 15: ProcessElemen(,w;, i)
Task: Insert a new element

1 if i modb; = Othen

2 je—]+1

3 | Initialize a new bucket sketcB; with accuracye/2;

4 FBj «— i;

5 Lg, «i+b1—1; /* Set timestamp range covered by Bj */

(o))

Insert(vi,w;) into Bj;
foreachg € FINDREGIONS(i) do /* Set of regions with buckets to be merged at

~

time i */
Brmin < ming{t|t € Gg};
9 Bmax < max {t|t € Gy} ; /* Find the left and right timestamp boundary of

region Gy */

10 Find bucketB’ andB’, such thabmi, < (i—Lg) < (i—Fg/) < (i —Lgr) < (i —Fgr) < bmax;
/* Find buckets covered by Gy */

11 B—BUB’; /* merge two buckets */
12 Fg «+— Fgr;

13 Lg « Lp;

14 Drop B’ andB”

Combining4.5and4.6, we have

1-&
1+&

S <Qot-Fe) <(1+&)s).

Now we sum all thém togetherj =12, ... k, we get

1;2 é% < é@ g(t—Fe) < (1+ sz)éﬁi.
ie.,
o B EJCRNE.
Using the facts G< € < 1 andg; = & = £/2, we get the stated accuracy guarantee. O
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Algorithm 16: ReturnApproximatiort,t)
Task: Return an estimate fc&

1 Let the set of buckets bdB;,Bsy,...,B} ; /* for some k, 1<k<2B */
2 s+ 0;
3 for 1<i<kdo
4 Let @i be result forB; usingm— 1+ 1 as window size;
L S+ S+ Q\i'g(t—FBi); /* Approx sum of element weights in Bj with Vi > T */

5

6 return S =s

4.3.2.3 Fast Bucket Merging

At every clock tick the WBMH maintenance algorithm needsheak whether there are buckets
that need to be merged. A naive solution is to go through alldiickets and merge those that are
covered by the same region. This procedure can severelgedda speed of stream processing. In this
section we present an algorithm which, given the clock tirrean efficiently return the set of regions

that have buckets to be merged at time

Definition 4.3.1(Sketch buckeB’s capacity|B|). The capacity of bucket B is given B =Lg — Fg+ 1,
where lg and Fg are the largest and smallest timestamps of the elementsviratinserted into B (as

in Algorithm 15).

Definition 4.3.2 (Bucket capacity in théh region) Define b= 1. ForO<i < (3, let ; = |B|, where B

is any bucket such thatt Fg = bj for some value of t.
In the next lemma, we show eaghis a constant, & i < 3, and can be directly computed.
Lemma4.3.1.ForO<i< B, li=|Gi-1|/li—1] -li-1

Proof. The lemma is proved by induction. For the base case, sinceaacity of the new bucket
created inGg is exactly equal tdGp|, no merges can happen@p, sol; = |Go| = | |Gol/lo] - lo. For the
inductive step, suppose the claim is true for same,,|; is a constant, which implies at masG;|/|; |
buckets of capacity; can be merged withis;. The new bucket from merging therefore has capacity

||Gi|/li] li = li+1, which is a constant. This completes the proof. O

In the next lemma, we show that givgrwe can directly find the sequence of time points at which

G has buckets to be merged.
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Algorithm 17 InitializeFindRegions()
Task: Initialize hash table with merging times.

1 Initialize hash tabld;

2 lg—1;

sforl<i<pB-—1do |« |[|Gi_1|/li—1]li-1; /* From Lemma 4.3.1 */

4 for1<i<pB-1do

5 if [|Gi|/li] > 2then Insert(i,b; 4 2lI;) into hash tabld ; /* Compute the time at
L which Gj firstly has mergable buckets */

Lemma 4.3.2. For each ic {j|j =0or [|Gj|/l;] < 2}, G has no buckets to be merged at any time;
for each ic {j|j > 0and||Gj|/li| > 2}, G has buckets to be merged at tiffig + (k| |Gi|/li | + j)li},
foreach jand k2 < j < |[|Gi|/li], k> 0.

Proof. The new bucket created &, has capacity equal G|, S0G, does not have any buckets to be
merged at any time. For> 0, if [|Gi|/li| < 2, thenG; will not have the chance to have two buckets of
capacityl; to be merged at any time. Now we consider the case wh&¢/l; | > 2 andi > 0. G; has

its first whole bucket at time= b; + I;. Note that withinG; at most| |G;j|/l; | buckets that ente®; can
be merged together. Thus, (1) at titne b; + 2I;,b; + 3l;,...,bi + [|Gi|/li] - i, buckets can be merged
within G;j; (2) This sequence of merge operations repeats éV&y/I; | - I; clock ticks, meanings; has

buckets to be merged at timés; + (k| |Gi|/l;| + j)I; }, for eachj andk, 2< j < ||Gj|/li], k>0. O

Lemma4.3.2provides a way for each region to directly compute the secpi@f time points at
which it has buckets to be merged. Based on this observatiepresent the algorithm that given time

t returns the set of regions, which have buckets to be mergadet.

Algorithm for Fast Bucket Merging. Our implementation of the algorithm uses a hash tablke
store the set of buckets that need to be merged at timedtainpparticular,t is hashed to the index
of a table cell which stores the set @ft) pairs, such that regio; has buckets to be merged at
time t. Algorithm 17 shows procedureNiTIALIZE FINDREGIONS() which first computed; using
Lemma4.3.1 It then uses Lemmd.3.2to fill in the earliest time at which regio; will have buckets

to be merged. Attimé FINDREGIONS) (Algorithm 18) retrieves the set of regions that have buckets
to be merged, and deletes those regions from the hash tdi#e, for each returned region, we compute

its next merging time using Lemn#a3.2and store the results into the corresponding hash tablke cell
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Algorithm 18: FindRegiond
Task: Find mergable regions at tinte
1 M—0;
2 foreach (i,t) € T do /* Region G has buckets to be merged at time t */
3 M—MuU{i};

4 if (t—b)/l; modL|Gi|/IiJ:0thent’<—t+2li;

5 elset’ < t+1j; /* Find the next time at which Gj has mergable buckets */
6 Insert(i,t’) into hash tabld;

7 return M ; /* set of regions with buckets to be merged at time t */

for the future lookup.

4.3.2.4 Time and Space Complexity

The time complexity depends on the sketch bucket that weschiod the decay functiaggiven by

the user.

Theorem 4.3.4. The (amortized) time complexity of the algorithm per updatélgorithm 15 is

O(Q(M/n)+1ogQ), where M is the total number of merges happened in procesisengtream, and
1. Q=0 <£—12 Iog% log n) is the size of the sketch bucket in words in Chapter
2. Q=0 (% log (%)) is the size of the sketch bucket in wordsaB)(

Proof. The per update cost is dominated by: (1) inserting the nemeié into the bucket, which takes
time sublinear in the size of the sketch bucket: @g(2) merging buckets when necessary, which
can be carried out in time linear in the size of the bucket datacture (Chapte® or (25)), so the
amortized time for merge per updateQsQ(M/n)) (3) Updating the hash table, which has to be done
once for every merge that occurs, and takes constant timmb{Dang these costs leads to the stated

time complexity. O

Time dependence on decay functiog. As stated in Theorem.3.4 the time complexity depends on
the value ofM, which in turn is determined by the choice of decay functipsince it defines the size
of each region in the WBMH and hence the sequence of buckejaseturing the stream processing.

We show the consequence for various broad classes of demetyofu
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¢ In the case of no decayg(x) = 1), the regionGy is infinitely large, so the algorithm maintains

only one bucket and therefore no bucket merges will happenM = 0, giving the time cost
O(logQ).

e For exponential decay functiorg§x) = 2-9%, a > 0, since all the regions have the same size
IGi| = [%Iog2 (1+ %)J 0 <i < B, no bucket merges will happen, i.84,= 0, giving the time
costO(logQ).

e For all other decay functions, such as polynomial degay = (x+ 1)~2, a > 0, many bucket
merges can happen. For a synchronous stream, there can lostat Inucket merges, as each
merge conceptually places two adjacent stream elementhwi@re in different buckets in the
same bucket. Thus, whatever the decay function, the totabeu of merges cannot be larger

than the stream size i.e.,M < n. So the amortized time co€t(Q).

The space complexity includes the space cost for the buakéie histogram and the hash table.

The space to represent each bucket depends on the choieehnfdket sketch.

Theorem 4.3.5. The space complexity of Algorithtd, 15and16is O((Z+logn)) bits, where

1. B = [10gy.¢/2(9(0) /g(n)|
2.Z2=0 (5_12 Iog% lognlog m) is the size in bit of the bucket sketch designed in Chéapter
3.Z=0 (g logmlog (%)) is the size of the bucket sketch in bits 25)

Proof. The number of buckets used is at mogt Zor the randomized sketch designed in Chaptér
order to have @ failure probability bound, by the union bound, we need tdtsefailure probability for
each bucket to b&/(2f3), sowe geZ = 0O (;12 Iog% lognlog m) (Lemma2.2.1]). For the deterministic
sketch designed iref), Z=0 (% logmlog (%)) (Section 3.1in25)). The size of the hash table can
be set taO(f) cells, because each of tlfieregions occupies at most one cell. Each cell @@egn)
bits of space to store the region’s index and the region’s mexge time. So all together, the total space

cost isO((Z+logn)). O

Space dependence on decay functian As shown in Theorem.3.5 the space complexity depends
on the decay function, since it determines the number of regions (implicitly thener of buckets)

in\WBMH=\We,shew,the,consequence for various broad classdeazy function:
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e For exponential decay functiomgx) =29, a > 0, we haveB = anlog, ., ,2 and therefore
the space complexity ® (n(logm)logn) bits. This means that this algorithm needs space linear

in the input size.

e For polynomial decay functiong(x) = (x+ 1)~ a> 0, sinceff = alog,  ,n, the space com-
plexity is sublinearQO (8% log?nlog mlog%) using the sketch in Chapt&rand
O( % lognlogmlog(en/logn) + log?n) using the sketch of26);

e In the case of no decayg(x) = 1), the regionGy is infinitely large, so the algorithm maintains

only one bucket, giving space cd3tZ + logn).

Intuitively the algorithm can approximat® with a relative error bound using small spaceyif
decays more slowly than the exponential decay. Furthegphee decreases the “slower” thatecays,
the limiting case being that of no decay. We complement thieovation with the result that the DCS

problem under exponential decay requires linear spacedigr ¢o provide relative error guarantees.

4.3.2.5 Asynchronous Streams

So far our discussion of the algorithm for relative error fasused on the case of strictly syn-
chronous streams, where the elements arrive in order otangs. In an asynchronous setting, a new
element(vy, wy,t;) may have timestamip < t wheret is the current time. But this can easily be handled
by the algorithm described above: the new element is justtlirinserted into the earlier bucket which
is responsible for timestanip. Meanwhile, at every clock tick if no new element with timestantps
received, we can still maintain the WBMH in the way as if weaiged a newdummystream element
whose timestamp i but we do not insert the dummy element into the WBMH. In otlverds, we
create a new sketch bucket for the dummy element when negdsgado not insert it into the sketch
bucket (leaving the new sketch bucket empty), and mergbabketch buckets determined. Therefore,
WBMH can be maintained exactly in the same way as in the caseendstrictly synchronous stream
is processed in Algorithd5. The accuracy and space guarantees do not alter, althoedimit cost
is affected because for each new element, we need to findgiigbticket to insert it.

Let Q,Z,M be the same as defined in Theordr8.4and4.3.5 LetL denote the age of the oldest

stream.element.
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Corollary 4.3.5.1. The (amortized) time complexity of the algorithm per timpdor an asynchronous
stream is Q(M/L)+ (n/L)(logQ+1logB)). The space complexity of the algorithm for an asyn-
chronous stream is B(Z +loglL)) bits, where = {Ioglﬁ/z(g(O)/g(L))w :

Proof. Time complexityNote that the number of sketch buckets only depends on theydanction
and the timestamp range in the stream, and there are no manmeZth= 2 {Ioglﬁ/z(g(O)/g(L))w
sketch buckets. All the sketch buckets can be managed byaadeal binary search tree with the
timestamp ranges of the buckets being the keys, so the tistercbnding the bucket for the insertion
of a new element i©(logf). Inserting a new element into a sketch bucket costs @fiegQ). So the
amortized time for inserting elements into WBMH per timesieO((n/L)(logQ+ logf))). Adding
the amortized time co€(Q(M /L)) in merging buckets per timestep, we get the stated time coityl
Space complexityThe space cost includes the space usage by the sketch b@glg%s and the

space usage by the hashtafBlg8logL). Add them together, we get the stated space complexitil

We note that in the case where the stream size is relativebhramnaller than the timestamp range
in the stream, the actual space cost by our algorithm will belmsmaller than the (worst case) space
complexity stated in the above theorem, because in thatmastof the sketch buckets will either be

empty or only have a few elements inserted.

4.4 Lower Bounds

This section shows large space lower bounds for finite decésuper) exponential decay for DCC
on strictly synchronous streams. Since DCC is a special@fd3€S, and every synchronous stream is
also an asynchronous stream, these lower bounds also apgp{y$ on asynchronous streams.

4.4.1 Finite Decay

Finite decay, defined in Sectidn4.], captures the case when after some age lmihe decayed

weight is zero.

Theorem 4.4.1.For any finite decay function g with age limit N, any streamahgprithm (determinis-

tic or randomized) that can provide an estimé,%such thaqé? —CY| < eC{ for any T given at query
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time for a stream of elements drawn from a universe of size st require Q(Nlog(m/N)) bits of

space.

Proof. The bound follows from the hardness of finding the maximurmelet within a sliding window

on a stream of integers. Tracking the maximum within a stjdinndow of sizeN over a data stream
need)(Nlog(m/N)) bits of space, whemais the size of the universe from which the stream elements
are drawn (Section 7.4 085)).

We show that if there exists an algorithm to approxin@ewhereg has age limilN, then there is
an algorithm to find the maximum of the lddtelements irR, using the same space. Leetdenote the
value of the maximum element in the I&elements of the stream. By definition, the decayed weights
of theN most recent elements are positive, while all older elemleange weight zero.

Note thatC? is a non-increasing function af soC{ > CJ for any t < a. Further, scCJ > 0, and
C?=0fort1 > a. If C¥ can be approximated with a good relative error, then it isibts to distinguish
between the cas&} > 0 andC{ = 0, for each value of. By repeatedly querying the data structure
for C? for different values ofr, we find a valuer* such thaC?. > 0 andC?,, ; = 0. Thent* must be

T

a, the maximum element of the ladtelements. O

Since sliding window decay is a special case of finite detdy,shows that approximatir@f with
g being a sliding window decay function cannot be solved wétlative error in sublinear space. This

resolves an open problem identified 8).(

4.4.2 Exponential Decay

Exponential decay functiong(x) = 2-9%, a > 0 are widely used in non-correlated time decayed
steaming data aggregation. It is easy to maintain simplessama counts under such decay effi-
ciently (21). However, in this section we will show that it i®t possible to approximat€? with
relative error guarantees using small spaam (the size of the universe) is large agds exponential
decay. This remains true for other classes of decay thatfaseet” than exponential decay. We first
present two natural approaches to approxin@tender an exponential decay functignand analyze

their space cost to show that each stores large amountsoofiafion.

www.manaraa.com



105

Algorithm . Since tracking the sum under exponential decay can be peetbrefficiently using
a single counter, we can just track the decayed correlatedtdor each distincy € [m]): Wy =
Yecrv—vd(t —t), thenC{ = 3., W¢. To ensure an good estimate fof, eachV’ must be tracked
with sufficiently many bits of precision. One approach ist tfeet each distinctv € [m| we maintain
the timestamps of the lagt: log, 1] elements of the substreaRy = {v; € Ry, = v}. From these
timestamps, one can approximat with a € relative error bound, and hen@? can be approx-
imated with ane relative error bound. Each timestamp@glogn) bits, so the total space cost is

O (m(logn)[ 4 log1]) bits. O

Algorithm Il.  The second algorithm tries to reduce the dependenaa loy observing that for some
close values of, the value ofC? may be quite similar, so there is potential for “compressiofs

g(x) =279, a > 0, we can write:

g__ ai—t) _ o—at ai
c? _Vgrz (-9 =2 w;z

wheret is the query time. We reduce approximati@g with a relative error bound to a counting
problem over an asynchronous stream with sliding windowigae We create a new stredhin this
model by treating each stream element as an item with timmgstet to its valuey; and with weight
291 The queryC! at timet can be interpreted as a sliding window query on the deriveshstR’ at
time mwith width m— 1+ 1. The answer to this query 8, - 2%1: by the above equation, scaling this
down by Z approximate€?.

The derived strear® can be summarized by sketches such as those in Chaptefl4). These
answer the sliding window query with relative ermrimplying relative error foICY. But the cost of
these sketches applied heredg} logm) bits, linear in the stream length: in the reduction, the nemb
of copies of each stream element increases exponentiallyiree space cost of the sketches depends

logarithmically on this quantity. O

Hardness of Exponential Decay.Algorithm | is a conceptually simple approach, which starder-
mation for each possible value in the domain. Algorithm ksisummaries that are compact in their
original setting, but when applied to the DCC problem, tlspiace must increase to give an accurate

answer for anyr, The core reason for the high space cost of both algorithiteifact that ag varies
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11.
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(a) Setting the Intervals over a Stream (b) Mapping from binary string to intervals

Figure 4.2 Creating a stream for the lower bound proof ugirgl

between 0 andh, the value ofc? can vary over an exponentially large range, and a large ttatztisre

is required to track so many different values. This is madeipe by the next theorem, which shows
that the space cost of Algorithm | is close to optimal. We gdmprovide a small space sketch with
a weakened guarantee in Sectidm.4 by limiting the range of values @} for which an accurate

answer is required.

Theorem 4.4.2. For an exponential decay functiorpg = 2-9%, a > 0 and & < 1/2, any algorithm
(one-pass or multi-pass, deterministic or randomized} mavidesé? over a stream of length &
©(m), such thatiC — C¥| < eCY for any T given at query time must stof2(mlog 2) bits, where m is

the universe size.

Proof. The proof uses a reduction from thedex problem in two-party communication complex-
ity (53). In the INDEX problem, Alice holds a binary string of length N, and the second holds an
indexi € [N]. Alice is allowed to send a single message to the second, wisb tinen output the value
of bli] (theith bit of stringb). Since no communication is allowed from Bob to Alice, theesof the
message must (N) bits, even allowing the protocol a constant probabilityaifufre G3).

We show that a small space streaming data structure to dpptex DCC under exponential de-
cay would allow a low communication complexity protocol f’wDEX. Given a binary string of
lengthN = mp, we construct an instance of a strearib). Herem s the size of the domain of the
stream values, and > 1 is an integer parameter set later. The stiinig divided intom partitions
Py, P, ..., Pm-1, WwhereZ; has bitsb[ip|,blip+1],...,b[(i+1)p—1].

Let ¢ =2[1/a]. The streanR(b) hasn = m2P/ elements. The positions inR(b) are divided
into mintervals,lo, l1,...,In_1, each of length 2, as shown in Figurd.2(a)for the casep = 1; the
more recent elements of the stream belong to the lower nedbeterval. Each intervdj; is further

dividediinto,2,segmentsyeach withelements. Each element is a tulei) wherev is the value and
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i is the timestamp. The stream is synchronous, and the timpstare consecutively increasing. The
segments irl; are numbered from O toP2- 1, with the more recent segments in the stream getting
smaller numbers. The value of every elemenR(b) is set to 0 except fom elements, one in each
interval. The lengttp bit string in partition?; in bis interpreted as an integer in the rarj@e2P — 1.

In interval I, the segment numbere®; is selected and the value of its most recent element is set to
j+1, as shown in Figurd.2(b)for the casep = 1.

Given a sketch that can approxim& over R(b) usingé bits, we show a protocol for thelibex
problem with communication complexifybits. Alice computes a sketch Bfb), which can be used to
approximate’:?, and sends it to Bob. Bob, given an indexomputed|i] from the sketch, as follows.
Let 7 = [i/p|. Note that bitb[i] lies in partition Z; in b. Bob recovers the complete integét;, by
using the sketch to distinguish between different assignsii® the bit string?;.

Consider two different assignments to the stritfg, representing two integers and p,. Without
losing the generality, lep; > p» (p1 and p, cannot be the same). Let the valueGf for these two
assignments b€; andC,. Suppose that the sketch Bfb) provides an answer faZf which has a
relative error of 1/2 or less. Lél andCz denotes the estimates returned @y C, respectively. In
Lemma4.4.1, we show that ifp; > p2, thenCy; < C; andél < 62. Thus, all the estimates f@? over
different assignments fog?; are in a total order. So, by using an estimat&€sfwe can distinguish
between different assignments t8;, and hence recover all a#;, and solve theNDEX problem.
Thus the size of the sketch Bfb) must be at leagR(N) = Q(mp) bits.

The stream length isa = m2P/a, so the lower bound on the sketch sizeNis= Q(mlog(n/m)),
for a constantr. Since the communication lower bound allows randomizatibe space lower bound
also holds for randomized stream algorithms. Since we dihggume that Alice processed the stream
in one pass, this space lower bound holds even if the streathoised to be processed in multiple

passes. ]
Let p; and pz, C; andC,, andC; andC, be defined as in the proof of Theoreh#.2
Lemma 4.4.1.1f p; > p, then G < C, andC; < C,.

Proof. Since the sketch provides estimates that are within avelatiror of 7/2, we have:
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C = 3
— < < — 4.7
> sCG=— (4.7)
C 4 3G,
=< < = 4.8
> sC=— (4.8)

Let c denote the current time.

CGl= 5 gl
{(u)eRB)Vv=T)

For integerj,0 < j < m— 1, let the contribution of intervaj to C? be defined as:

ci)= ¥ i)

{(vi)eljv=1}

Also, since the two bit strings differ in the values assigted’;, the corresponding streams differ
in interval l;. LetC;(1) andCy(1) respectively denote the value Gf1) for the two inputs. We note
thatCy (1) andCy(1) differ by a factor of at least 4, since they both contain amelet with the same
value inl, but in different positions, so that the decayed weightledliy a factor of at least 4. Since

p1 > p2, according to the stream construction in the proof of Theotet.2 we have

Cu(1) < CZL(J) (4.9)
In Lemma4.4.2 we show thaC{ is dominated by the ter@(7). More precisely:
C(r)<Ci< gC(r) (4.10)
Combining Inequalitied.9and4.10 we get
C< %’cl(r) < gicz(r) = %Cg(r) < =C <G

www.manharaa.com




109

Combining Inequalitied.7, 4.8, and4.9, we get:

~ 3 34 1 1 A
<= —— = <= =G <
C]_ < ZC]_ < 23C1(T) ZC]_(T) < 202(1') < 202 < Cz

Lemma 4.4.2.

C(r)<Ci< gC(r)

Proof. Note thatCy = zTZ‘OlC(j). For every 0< j < 1, we note that; does not have any tuplgs,i)
with v > 1. Thus, the contribution of such tuples@ is 0, and so

m-1
=T
Also, for j > T, the contribution ofC(j) to CY is non-zero, since foj > 0, |; has tuplegv,i) with
v> 1. Thus,C(1) < C¥, which proves one part of the Lemma

Next, we note that for any integér, no matter what the contents lof_; is

C(1)
C(r+{) < e

The reason is as follows. Note tha¢r) is non-zero, since there is at one element; iwith value
greater than or equal tn. Further, there is exactly one non-zero element in eachvaité, ;. Since

the difference in timestamps between the non-zero eleméptindl,, ; is at leas -/, we have

C(r+0) <C(1)-g(1g) =0(1) -2 % < A

where the last step follows from the definitionfof
m-1 ) m-1-1 —1— ® C(T 4
~Sci)= 3 cr+i)< z <5 A Zem
=t {=0 {=0 {=0
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4.4.3 Super-exponential Decay

The result in Theorem.4.2also holds for the super-exponential decay functions, défin Sec-

tion1.4.1

Theorem 4.4.3.Consider a stream of length-a©(m), and a super-exponential decay function g. Any
algorithm (one-pass or multi-pass, deterministic or ramdped) that provide§?, an estimate of &,
such that|6? —C{| < eC{ for any 1 given at query time must sto@(mlog n%) bits, where m is the

universe size.

Proof. The proof is nearly identical to the one for Theordm.2 having the same structure and using
the same reduction to theibex problem.

Again, Alice has a bit stringy of lengthmp, which is divided intam partitions: %, %1, ..., Zm-1,
where & has bitsb[ip],blip+1],...,b[(i+1)p—1]. Based on the bit striny, Alice creates a stream
R(b) of lengthn = 2°Pm¢ +- ¢, where? = [log,4| andc is the constant in the definition of super-
exponential decay in Sectidn4.1, as follows. Each element is(&t) pair and elements are received
in the order of their timestamps D...,2°Pm¢ 4+ c—1, i.e., the streanR(b) is strictly synchronous.
Thec elements with largest timestampsRi(b) are assigned with value 0. LBf(b) denote the other
elements inR(b). For streanR (b), Alice assigns the values in the same way as she di&fby in
the proof for Theoren#.4.2 (1) R (b) is divided intom intervals,lo,l1,...,In_1, each of length %;

(2) Each intervalj is further divided into 2 segments, each withelements. The segmentslinare
numbered from 0 to 2— 1, with the more recent segments in the stream getting smrmallabers; (3)
The value of every element & (b) is set to 0 except fom elements, one in each interval. The length
p bit string in partition.?; in b is interpreted as an integer in the rarj@e2® — 1. In intervall;j, the
segment numbered’; is selected and the value of its most recent element is get-th

Alice process the streaR(b) and sends the sketch to Bob. Given the ingeBob setsr = [i/p]
and queries the sketch f6f. Since the ages of the elementsRitb) are at least, by the definition of
super-exponential decay, any two neighboring elemerf®(ly) have their weights differ by a factor of
at leasto. Thus, the two most recent elements in any two neighboriggsets differ in their weights
by a factor of at least 4, since we get [log, 4]. Further, since the most recent elements R(b) will

not have any contribution i@?, for anyt > 0, because they are all assigned with value 0, we now have
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the same argument between the bit stiirgnd streanR (b) as we did for the bit stringp and stream
R(b) in the proof for Theorern.4.2 by usingé?, the estimate of? returned by the sketch, Bob can
reveal the value df[i]. So the space cost for processing stré®(im) of lengthn = 2Pm¢ + c is at least
mpbits. By replacep, we get the space lower bound@f mlog(n/m)) bits, by constants of ando
Since the communication lower bound allows randomizatiloa,space lower bound also holds for
randomized stream algorithms. Since we did not assume i processed the stream in one pass,

this space lower bound holds even if the stream is allowee forbcessed in multiple passes.

4.4.4 Finite (Super) Exponential Decay

As noted above, the lower bound proof relies on distingagta sequence of exponentially de-
creasing possible values of the DCC. In practical situatidtroften suffices to return an answer of zero
when the true answer is less than some specified bauithis creates a “finite” version of exponential

decay.

Definition 4.4.1. A decay function g is a finite exponential decay function thitbsholdu, 0 < u < 1,

if: (1) g(x) =279, a >0,ifx < %Iogzﬁ (which implies @x) > u); (2) g(x) = 0, otherwise.

Since finite exponential decay is a finite decay, the spacerltwound in Theorerd.4.1implies
space ofQ((1/a)log(1/u)) bits is necessary to approxima@§. A simple algorithm forC¥ simply
stores all the stream elements with non-zero decayed veeigihe space i© ((1/a) - logm-log(1/u))
bits, which is (nearly) optimal (treating lagas a small constant). This approach extends to the finite

versions of super-exponential decay.

4.4.5 Sub-exponential decay

For any decay functiog(x), where lim_.. g(x) = 0, we can always find”n positions (times-
tamps) in the stream: € x; < X2 < ... < Xorm, Such that for every, 1 < i < 2Pm, we haveg(t —
Xi—1)/9(t —%) < 1/4. Thus, it is natural to analyze what happens when we apglyctimstruction
from the lower bound in Theoredh 4.2to streams under such functions. Certainly, the same style o

argument constructs a stream that forces a large datawsudf we fix somem and setp = 1, the
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Figure 4.3 Throughput and accuracy with sliding window geeaditive error.

stream has to be truly enormous to imply a large space lowendoe.g., for the polynomial decay
functiong(x) = (x+1)2, a> 0, we neech = ©(2"™2) to forceQ(m) space. This is in agreement with
the upper bounds in Sectigh3.2which gave algorithms that depend logarithmically ronfor such

truly huge values of, this leads to a requirement of 02 = Q(m), so there is no contradiction.

4.5 Experiments

We present results from an experimental evaluation of tgerghms on two data sets. The
first was web traffic logs from the 1998 World Cup on June 19 (worldcup’ data set) from
http://ita.ee.1lbl.gov/. Each stream element was a tuglew,t), wherev was the client id ,
w the packet size (modulo 100, simply to have initial weightarided within a range), andhe times-

tamp, of the original web traffic logs, respectively. Theagat had 33695769 elements. The second
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Figure 4.4 Performance of Relative Error Algorithm, withy@mmial Decay.

was a synthetically generated data set (the ‘syntheti@ dat). The size of the synthetic data is the
same as the worldcup data set. Here, the timestamp of anmtieaerandom number chosen uniformly
from the rang€g1, max] where max= 898293600 is the maximum timestamp in the world cup data
set. The value is chosen uniformly from the randé, max,|, where max= 1823218 is the maximum
value in the worldcup data set. The weight is chosen sirgjlad. uniformly from the rangél, max,|
where may, = 99 is the maximum weight in the world cup data.

We implemented our algorithms using C++/STL and all expenta were performed on a SUSE
Linux Laptop with 1GB memory. Both input streams were asyoobus, and elements do not arrive

in timestamp order.

Additive Error. We implemented the algorithm for additive error (Sect®8.1) using the sketch in
(30) as the basis. Note that the sketch3@)(provides the additional property of duplicate insengitiv
i.e., a re-insertion of the data into the sketch does notgddme state of the sketch. Since our stream
model does not have duplicates, our implementation of tleécbkkin 30) does not need to support
duplicates detection and therefore improves the time effigi in the stream processing.

Since a query fo§! whereg is not a sliding window decay can be reduced to queries fdingji
window decay based DCR1), we conducted experiments with the correlated Srwhereg is the
sliding decay function. The window size is54 10’ for the synthetic data and 3600 for the worldcup
data. We tried a range of values of the threshpldrom the 5 percent quantile (5th percentile) of

the values of stream elements to the 95 percent quantile. NAlgzed the accuracy of the estimates
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returned by the sketch, for a given space budget.

Figures4.3(a)and4.3(b) show the observed additive error as a function of the spaee log the
algorithm for different values of. The space cost is measured in the number of nodes, where each
node is the space required to store a single stream elgwent), which takes a constant number of
bytes. This cost can be compared to the naive method whiotssadl input elements (nearly 34 million
nodes). The observed error is usually significantly smdtlan the guarantee provided by theory. The
theoretical guarantee holds irrespective of the value of the window size. Note that the additive
error decreased as the square root of the space cost, aseekpigured.3(c) shows the throughput,
which is defined as the number of stream elements processes@end, as a function of the space
used. From the results, the trend is for the throughput toedse slowly as the space increases. Across

a wide range of values for the space, the throughput is bet@8eK and 350K updates per second.

Relative Error. We implemented WBMH and the sketch designed in Chapies the bucket sketch
embedded in WBMH. We performed similar experiments to testalgorithms for relative error,
based on the polynomial decay functigfx) = 1/(x+1)*®, a non-exponential converging decay. The
thresholds are the same as in the additive error algorithire r€sults are shown in Figude4. In
general, the space cost for a given error for polynomial yleeas much smaller than the algorithm
for sliding windows (Figuret.4(a). This greater space efficiency comes at some cost. we have to
fix the decay functiora priori—the additive error result allows the decay function to bectjed at
query time. The throughput for the relative error algoritisnalso appreciably lower than the additive
error algorithm (Figuret.4(b)), by over an order of magnitude. This is partly due to the tgred@me
complexity of the relative error algorithm caused by theigaic bucket merging operations which

access every node in the merged buckets, and partly becauseglementation is not fully tuned.

4.6 Concluding Remarks

Our results shed light on the problem of computing correlatens over time-decayed streams. The
upper bounds are quite strong, since they apply to asynobsostreams with arbitrary timestamps.
It is also possible to extend these results to a distributeshiming model, since the summarizing

data structures used can naturally be computed over ditgdldata, and merged together to give a
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summary of the union of the streams. The lower bounds ardaslynstrong, since they apply to the
most restricted model, for computing DCC where there is xate arrival per time unit.

The correlated sum is at the heart of many correlated agg®daut there are other natural corre-
lated computations to consider which do not follow immealiafrom DCS. Some we expect to be hard
in general: correlated maximum max wig(t —t;) has a linear space lower bound under finite decay
functions, since this lower bound follows from the uncaatetl case. Other analysis tasks seem feasi-
ble but challenging: for example, to output a good set oftelusenters for those points with > 1,
weighted bywig(t —t;). It will be of interest to understand exactly which such etated aggregations

are possible in a streaming setting.
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CHAPTER 5. Forward Decay: A Practical Decay Model for StreamSystems

As we have shown in the last few chapters, temporal data siratydata streaming systems often
uses time decay to reduce the importance of older tuplebpuiiteliminating their influence, on the
results of the analysis. While exponential time decay is momly used in practice (except for the
correlated data aggregation), other decay functions fmtynomial decay) are not, even though they
have been identified as useful. We argue that this is becaesastial time decay, defined in Defini-
tion1.4.1 are “backwards”: the decayed weight of a tuple is basedsaagie, measured backward from
the current time. Since this age is constantly changingh siecay is too complex and unwieldy for
scalable implementation.

In this chapter, we propose a new clasdafvard decay functions based on measuring forward
from a fixed point in time. We show that this model captures réetya of backward decay functions,
such as exponential decay and landmark windows. We prof¥fidéeat algorithms to compute a vari-
ety of aggregates and draw samples under forward decayhamdthat these are easy to implement
scalably. Further, we provide empirical evidence thatdhes be executed in a production data stream
management system with little or no overhead compared taidecayed computations. Our im-
plementation required no extensions to the query languagfeeddSMS, demonstrating that forward

decay represents a practical model of time decay for systeansleal with time-based data.

5.1 Introduction

Building robust systems for managing data streams is aestgitig task, since typical streams
(in application areas such as networks and financial datajeaat very high rates and require im-
mediate processing. Queries are typically continuous,ningathat the output of a query is itself a

stream, which may be the input for subsequent querying. eBysimust also cope with data quality
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issues: for example, there is no guarantee that tuples wilpesented in timestamp order, and so
techniques such as punctuatioi§)(and heartbeat$HQ) are used to avoid query blocking. A number
of general purpose prototype streaming systems have beatedr such as Stream3j], Aurora ©9)
and TelegraphCQL(); the current state-of-the-art deployed streaming syst@meluding GS 83) and
Streambaser@)) are specialized for particular application domains\yieking and financial).

Motivated by such applications, there has been a great deabrx on algorithms for efficiently
answering streaming queries under time decay. Much of duad has been on giving approximate
answers to aggregate queries. However, within currentystazh systems, the support for time decay
is actually quite limited. We give our examples and evabratising GS, a mature network stream
processing system developed at AT&33]. This system allows a wide variety of queries to be posed
in an SQL-like language, and has many hooks in it for extélitgibsupport for user defined operators
(UDOPs) and user defined aggregate functions (UDAFs), walichv arbitrary (C/C++) code to be
executed on selected tuples. This infrastructure has etapproximate algorithms to be evaluated in
the non-decayed cas2d). Yet support for time decay has so far been limited to a sentiptie-bucket
approach: the query specifies a duration, such as the tinhe igrainularity of minutes, and an answer
is provided for each minute-wise time-bucket.

On closer inspection, it is clear that many of the approaphesosed so far for handling time decay
do not scale well within streaming systems. Answering esenith a sliding window exactly requires
buffering large quantities of tuples. While the approxienablutions, such as exponential histograms
and its variants35; 42; 25), improve the resources needed, they can still be of the afdaegabytes
of space per group and milliseconds of time per tuple to t@akplex holistic aggregates. But the
motivating applications can typically only afford a fewdytes of space per group in a query (since
there can be tens of thousands of active groups) and mianods@er update, at best. So while these
solutions (surveyed in more detail in Sectir) have good asymptotic performance, they are not yet
suitable for deployment in high throughput systems.

The complexity of existing algorithms for time decay aribesause work so far has mostly con-
centrated on the case that we dudickward decayDefinition 1.4.1). That is, the weight of an item
is computed based on its age, measutbiagk from the current time. But implementing such decay

is problematic, since an item’s age changes as time elapsdsng it necessary to maintain a lot of
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additional information to recompute the relative weiglutisthe query.

Our Contributions. We propose a new class of decay functions which instead mesaghe age of an
item forwardsfrom an appropriate landmark point. Thus we call this cfasward decay It has the
advantage that it can be much easier to compute with, sirc&fdhward age” of an item (relative to
the landmark) is fixed once it has been observed,; its relatipertance diminishes as newer items are
seen, since their weights grow to dominate the older weights

We show several important properties of forward decay:

e Exponential decay is identical under both forward and backwdecay models. The forward
view of exponential decay helps to explain why this decay ehagleasier to compute; it also
allows us to propose simple, effective algorithms for sangpunder exponential decay, which

strictly improve on the state of the art.

e For a large class of functions, specifically the monomiatsywéard decay guarantees a useful
relative decay propertywhich is that the effective weight of an item is a functionitsfrelative
age how far it falls along the interval between the landmarketiand the current time. Thisis a

natural and intuitive property that was not attainable ut@dekward decay models.
e Forward decay captures and generalizes the existing rsodlandmark windows.

Our analysis shows how forward decay can be computed usiatingxtechniques for aggregates
on weighted tuples in data streams. As a consequence, effand scalable algorithms follow imme-
diately, with the same space and time bounds as their undeéaunterparts. Further, we implement
these within the GS system, and compare to a selection ofrgeteehniques for backward decay.
Simple aggregation such as count and sum is immediate, Wwbiistic aggregates such as quantiles
and heavy hitters require only appropriate UDAFs for theghved versions of the aggregates. No
extensions to the query language or changes to the systeneeded. We observe that the forward
decay solutions are practical for use in high speed systenm®ntrast to the backward decay meth-
ods. In our experiments on live network streams, we obseatthe forward decay approach could
answer queries on multi-gigabit data without loss, whilghnds based on backward decay dropped

many packets, and reached 100% CPU load.
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Outline. We proceed as follows: In Secti@2we describe decay models and existing backward decay
definitions, then in Sectiof.3we introduce our model of forward decay and study its prageriWe
show how to compute aggregates under forward decay in 88t and how to draw samples in
Section5.5. Implementation issues are discussed in Sediénrelated work in Sectio.7, and our

experimental study is described in SectmB.

5.2 Decay functions

We consider a stream of iten(g,t;), projected on the dimensions of thalueandtimestamgrom
the streanR, defined in Chaptet.3. We first give a more general definition of decay function whic

can abstract the backward decay model defined in Definltidriand the forward decay model.

Definition 5.2.1. A decay functiortakes some information about the ith item, and returns a iy
this item. It can depend on a variety of properties of the iseich as;it v as well as the current time t,
but for brevity we will write it simply a® (i,t), or just 7 (i) when t is implicit. We define a function
# (i,t) to be adecay functiorif it satisfies the following properties:

1.7(i,t) =1whent=tand0 < #(i,t) < 1lforallt >t;.

2. is monotone non-increasing as time increasés: t = #/(i,t') < #/(i,t).

5.2.1 Backward Decay Functions

Prior work on time decay, including those presented in evichapters, has focused on decay
functions of a particular form: where the weight of an itenm & written as a function of its initial
weight and itsage X, where the age at time> t; is simplyx =t —t;. We refer to decay of this form
asbackward decaysince we are always measuribgckfrom the current time to the item’s timestamp.

More formally, we state:

Definition 5.2.2. A backward decay function is defined by a positive monotonemweasing function

g() so that the weight of the ith item at time t is given by

Cogt—t)  g(t—t)
7 =40"0 = 90
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The denominator in the expression normalizes the weighthaioit obeys condition 1 of Defini-
tion 5.2.1 Some examples of the most popular decay functions are @fexeby pickingg to be of a
certain form, such aso decay, sliding window decay, exponential demagpolynomial decaydefined
in Chapterl.4, by adding an appropriate denominator. It is easy to vehét all the above functions
satisfy the requirements for decay functions (Definito®.J).

There has been significant study of how to compute a variesingple and complex aggregates
under decay function(; 57; 25) (especially the special case of sliding winddiy 35; 54)). Typically
their cost is high: the space and time required to apply deaaye many times the cost of computing

the aggregate without decay. We survey these results in dedad in Sectiorb.7.

5.3 Forward Decay

The main challenge in implementing time decay computatiortter a backward decay function is
that we must compute a function of thge of each item, relative to the current time, and this is con-
stantly changing. To compute a simple decayed aggregatdhexsuch as decayed sum, can require
revisiting every input item to compute the contribution ladt item (an exception is exponentially de-
cayed sum and counts, which can be tracked in constant spade groperties of the decay function).

Instead we proposeorward Decayas a different model of decay satisfying Definitior2.1 The
forward decay is computed on the amount of time between tlieabof an item and a fixed point
L, known as the landmark. By convention, this landmark is stime earlier than all other items;
we discuss how this landmark can be chosen below. Thus weakag forward in time from the
landmark to see the item, instead of lookimackwardfrom the current time.

Because we wish to weight more recent items more heavily ¢h@er ones, forward decay func-
tions are based on monotonen-decreasindunctionsy. In order to normalize values given that the
function value increases with time, we typically need tdude a normalizing factor in terms gft),

the function of the current time. More formally,

Definition 5.3.1. Given a positive monotone non-decreasing function y, arghdrhark time L, the
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decayed weighof an item with arrival time;jt> L measured at time} t; is given by

This definition ensures that when=t; the weight is 1 (condition 1 of Definitio®.2.1). Ast
increases, this weight never increases (due to the momwioni y) and remains in the rangé, 1].

Observe that scalingby a constant has no effect on the value of the decayed weight.

Example 5.3.1.Consider the stream ¢f;,v;) pairs

< ={(1054),(107,8),(103 3),(108 6), (104,4)}

Let the landmark time & 100, and set yn) = n?. Evaluated at t= 110, the decayed weights are
respectively

{0.25,0.49,0.09,0.64,0.16}.

The shape of this decay function is plotted in Figbré O

As with backward decay, the most natural choices of funstjoliall into similar classes:

e No decay:y(n) =1 for all n.
¢ Polynomial decayy(n) = n? for some parametgs > 0.
e Exponential decayy(n) = exp(an) for parameterr > 0.

e Landmark Windowy(n) = 1 for n > 0, and O otherwise.

We discuss the properties of each of these classes of fohesay in turn.

5.3.1 Exponential Decay

We observe that forward exponential decay coincides gxadth backward exponential decay.

Formally, consider item which arrives at timeg;. Under backward decay and the functigfa) =
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(a) Weight at timet (b) Weight at later time’

Figure 5.1 Relative decay property for forward decay(m = n?
exp(—a(a)), its decayed weight i#i,t) = exp(—a(t —t;)). Under forward decay, its decayed weight
under the functiory(n) = exp(a(n)) is

yti—L) _ expla(ti—L))
yt—L)  expla(t-L))

=explati—aL—at+al) =exp(—a(t—t)) = #i,t)

i.e. the two definitions precisely coincide. This is not ttese for other classes of decay such as
backward polynomial decay.

This observation motivates our study of forward decay, esihchows forward decay contains an
important existing class of functions that have been widélyied and adopted. But more than this,
viewing exponential decay from the forward decay perspeddllows us to propose effective new

algorithms for problems such as sampling (Sec&ds).

5.3.2 Polynomial Decay

In general, one can specify arbitrary polynomial decay fions of the formy(n) = 5 ; yjnj for
some set ofj;s. But the most natural polynomials to use are mononyais, = nP for some exponent

B. Under such decay functions, the decayed weights obey aoriamprelative decayproperty.

Definition 5.3.2. A system for determining decayed weights is said to haveetative decayroperty

if, for any time t after a landmark time L, the weight for itewith time stampt + (1— y)L is the same.

In other words, if the weight assigned to an item depends emhywhere it falls as a fraction in the
window defined by andt, then it is relative decay. So for instance, the item arg\ialf way between

L andt is assigned the same weight, tascreases. This should be an intuitive property: it asks tha
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the weight assigned to an item is a function ofrékative age that is, its age as a fraction of the total
time period observed. However, backward decay is only ameckwithabsolute ageand so gives no

guarantee of relative decay.

Lemma 5.3.1. Forward decay based on a monomial functiam)y= n? satisfies the relative decay

property.

Proof. Lety(n) = nf. The weight for an item with arrival timg = yt 4+ (1— y)L evaluated at timeis

given by
pig YL YD) (ye-0P

yt—L)  yt-L) (L)

O

This is illustrated in Figuré.1 with y(n) = n?: at timet, in Figure5.1(a) itemt; chosen to fall
half-way betweer. andt has weight 0.25. This is true for any tirtieas shown in Figuré.1(b) where

t/ (also chosen to fall midway betweérandt’) has the same weight as before.

Landmark Choice. This observation is helpful in determining a meaningfuldararkL to choose for
forward decay: because of the relative decay property, Kemaense to set the landmark time to the
start time (or just before) of the query in question. Themgewith the same relative time within the
span of timestamps associated with the query have the saragatbweight. From now on, we assume
that the default fot for a given query is (a lower bound on) the smallest timestantpe stream. For
example, when timestamps are allocated as the system twigci the tuple is observed, we deto

be the time when the query was issued.

5.3.3 Landmark windows

Lastly, we observe that the natural equivalent of (backyvaliding window is theLandmark win-
dow;, given by the forward decay function that assigns weightdllttems with timestamp greater than
landmarkL (43). The window is said to “close” when the query terminates+hpps based on seeing
a certain number of tuples, or after a certain time has ethpBeis model has been implicitly adopted
by many systems, since it is trivial to implement (just douleag aggregation until the window closes).

Here, we give a foundation for this model by viewing it as afdie) instance of forward decay.
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5.4 Aggregate Computation under Forward Decayed Models

A decay function in either the forward or backward settingigiss a weight to each item in the
input (and the value of this weight can vary over time). Aggte computations over such data must
now use these weights to scale the contribution of each itemmost cases, this leads to a natural
weighted generalization of the aggregate. We next workutjitachoices of aggregates, and show their
weighted generalization. We then discuss how to implemeatteor approximate computation of these

aggregates overtuples assuming forward decay based on a fungtiand a landmark timeé.

5.4.1 Count, Sum and Average

The three basic aggregates of Count, Sum and Average aightfbavard to generalize under

forward decay:

Definition 5.4.1 (Count, Sum and Average)he decayed count, C, is the sum of decayed weights of

stream items

n
y(ti —L)
C=
2,y(-1)
The decayed sum, S, takes an additional vajdeneach item i, and sums the weighted values:

B D ovi-y(ti—L)
_i: y(t—L)

The decayed average, A, is the ratio of decayed sum to decayed, so
A=S/C= (ZY(ti = I—)Vi> / (ZY(ti - L))
| |

Example 5.4.1. Take the same example stream given in exa®m@d Then we have

C=0.25+0.49+0.09+40.64+0.16 = 1.63
S=0.25-4+0.49-8+0.09-3+0.64-6+0.16-4 = 9.67

A=S/C =593 O
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Observe that we can write= y(t—il_)(zi y(ti—L)v;). This can be computed by maintaining the value
of 3;y(ti —L)vi, and scaling by the value gft — L) only when needed for outpu can be maintained
in the same fashion, ariis given by the ratio of these two values. Note that the vafubeaverage
under this definition does not vary as the current tinrereases: this is because the average gives an
average of the input values, weighted towards the more teces. But, for instance, if all items have
the same valug, then their average should i@o matter when the query is executed, which is obeyed
by our definition.

Other simple numeric quantities can be computed simild&ty. example, the decayed variante
(interpreting weights as probabilities) can be writtereimms of the decayed sum of squared val\fes,
Siy(ti— L)vZ/C— A2, More generally, the decayed version of any summation ofgebaaic expression
of tuple values (i.e. one based on standard arithmetic bpesasuch as addition, multiplication and
exponentiation) is found by computing the value of the esgien on tuple;, multiplying by y(t; — L).

The final result is found by scaling the sumyiy — L) at query timet. Thus:

Theorem 5.4.1.Any summation of an arithmetic operation on tuples that candmputed in constant

space without decay can also be computed in constant spaies any forward decay function.

This has immediate implications for any high-performantteasning system: simple algebraic
guantities can be computed under any forward decay funcisomg existing arithmetic support. This
can be specified directly in the query by spelling out the fiamcto create the weights, or by adding
some simple syntactic sugar to achieve the same effect. ¥aonpe, within the GS query language

(GSQL), we can express a decayed count query under quadeatiy as:

select tb, destIP, destPort,
sum(len*(time % 60)*(time % 60))/3600 from TCP

group by time/60 as tb, destIP, destPort

Here, the query finds the (decayed) sum of lengths of paclatsimique destination (port, ad-
dress) pair, within a window constrained to 60 seconds @dme scaling by 60= 3600). Since it is
expressed entirely in the high-level query language, thieniger can decide how to execute it, find
shared subexpressions etc.

These results are in contrast to backward decay functionisr work has shown approximation
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algorithms for sum and count with-1 ¢ relative error for any backward decay function, but reagjri

a blow up in space by a@(% logn) factor.

5.4.2 Min and Max

For Min (respectively, Max), we want to find the tuple whiclstihe smallest (largest) associated
decayedralue. Under backward decay functions, this is a challentask, since the changing value of
the decay function over time causes the value of the Min (Maxgary over time. In contrast, applying

the definition to forward decay generates the following didin:

Definition 5.4.2(Min and Max) The decayed minimum value MIN is defined as

MIN = min (V‘%(t_il__;)) = L M-yl - L)

and the decayed maximum value MAX is defined as

B yti—-L)y\ 1 it
MAX_max< T )—y( max(vi -y(t L))

V-
y(t—L) t-L)

Observe that in both cases it suffices to compute the smétjesatest) value of(ti — L)v; seen
so far. FOrMAX, when a new(t;,v;) pair is observed, compute the corresponding valugtof- L)v;,
and retain the item if it exceeds the largest value seen sé&ior algebraic aggregates, this is easily
computed within a streaming system as a simple extensidreafridecayed aggregate. In contrast, this
problem is provably hard to solve in small space under baakwacay, since in the sliding window

case we can force the algorithm to “remember” the entireartatof the window.

5.4.3 Heavy Hitters and Quantiles

For holistic aggregates such as Heavy Hitters and Quantilés more complicated to find the
answer to queries. However, we will show approximate sohgtito the problem with forward decay
which have the same asymptotic costs as their undecayedadznis. Meanwhile, for backward decay,

methods take at least a logarithmic factor more space (Be%ir).

Approximate Heavy Hitters. First, we formally define the heavy hitters problem:
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Definition 5.4.3 (Heavy hitters under forward decayfjor each item in the input, v, its decayed count

isgiven by d= 3, _,y(ti—L)/y(t —L). Given a threshold valug, the ¢ heavy-hitters are all items v
satisfying ¢ > ¢C.

Example 5.4.2.Consider the example stream given in Exantp®&1 We have G= 1.63, and
d3; =0.09,d4 =0.16+0.25=0.41,ds = 0.64,dg = 0.49

Settingp = 0.2, the @ heavy hitters are items 4, 6, and 8, since their decayed s@axueed.63+«0.2 =
0.326 O

Observe, as in heavy hitters without decay, tat; di = C, whereC is the (decayed) count given
by Definition5.4.1 The (decayed) heavy hitters are those items whose (decegedt is at least @
fraction of the total (decayed) count. Efficiently compagtithe heavy hitters over a stream of arrivals
is a challenging problem that has attracted much study evémei unweighted, undecayed case. The
difficulty comes from trying to keep track of sufficient infoation while using much fewer resources
than explicitly tracking information about each distinetm. Here, efficient approximate solutions are
known. Given a parametet these approximate solutions may give an error in the ettun@ecayed)

count of items of at most times the sum of all (decayed) counts.

Theorem 5.4.2. Given an error bounc, we find all items with @> ¢C, and report no items with
dy < (¢ — €)C under the forward decay model using spacgl ) counters, and processing each

update in time Qog1/¢).

Proof. Observe that we can rewrite the requirement as

dy(t—L) > ¢Cy(t—L)

or equivalently § y(ti—L) > @ y(ti—L).
vin I |Z I

In other words, we can treat this as an instance of a weighgadyhhitters problem, where the weight

of each item is set on arrival &ét; — L). Importantly, these weights do not change over time.
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We can use the SpaceSaving algorithm proposed by Metwady, (59). As analyzed inZ4), this
algorithm naturally extends to weighted updates. We onflititails of the proof for brevity; the proof
in (24) is in the context of exponentially decayed updates, buihédr arbitrarily weighted updates.
The running time and resources needed are the same as timalo8igaceSaving algorithm, which can

be implemented in the given bounds. O

Approximate Quantiles. The quantiles of a distribution generalize the median, abttie quantile
is that item which dominates@fraction of the other items. As with heavy hitters, a natuvalghted
generalization can be used over time-decayed weights: wesaarch for an item that dominategpa

fraction of the decayed weights. Formally,

Definition 5.4.4 (Quantiles under forward decayfror each item v, its decayed rank is computed as
rv=Svu<Y(ti—L)/y(t—L). Given a query value, the ¢ quantile is the smallest item v satisfying
rv > ¢C.

Again, exact computation of quantiles can be costly ovegydatata sets, since it requires keeping
information about the whole input. Instead, approximatargiles tolerate additive err@rin the rank
(relative to the maximum rank). We will assume that the itemesdrawn from an integer domain of

sizeU, i.e. eachy € [1,U]. Then:

Theorem 5.4.3.Given an error bound, we find decayeg@-quantiles under forward decay using space

O(% logU) counters, and processing each update in tinfeo@logU ).

Proof. Similarly to heavy hitters, we can factor out thg — L) term, so that we reduce the problem to
find the smallest itemsuch thaty, -, y(ti —L) > @3;y(ti — L). This is a weighted quantiles problem
defined over the (static) weighygt; —L). We can now make use of solutions to weighted quantiles
problems. The g-digest data structui;(24) naturally handles weighted updates and answers the

approximate quantiles problem with the bounds given in tagement of the theorem. O

This approach applies to other holistic aggregate comiputbver data streams (e.g. clustering
and other geometric propertie$t{ 48)): factor out they(t — L) term and track the input using weights

y(ti —L). We suppress further examples that fit this pattern for brevi
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5.4.4 Count Distinct

Aggregates withdistinct keywords, such as Count Distinct, are a little more comp@idao
handle. It is not immediately obvious how to extend the cadlistinct aggregate to the weighted
scenario. We proceed by analogy with the undecayed cage; the can view the process as computing
a single weight for each distinct item and summing these Wigitp get the overall aggregate. In the
undecayed case, the weight for each distinct item preseheimput is always 1. So for the weighted
(time decayed) case, the natural generalization is to ctengame function of the weights of each
distinct item and sum these. For time decay, the weight ofeam begins at 1 and decays towards 0, so
we choose to define the representative weight of a set of isrttee maximum of their current weights.
This generalizes the unweighted case, which can be thodighking the max of the set of the (all 1)

values attached to each distinct item. More formally,

Definition 5.4.5 (Count Distinct under forward decayYhe distinct count D of a set of items under

forward decay is

B y(ti —L)
D=2 M)

This definition seems to be justified, since it can be apprateéioh using techniques based on careful

combinations of unweighted count distinct summaries.

Theorem 5.4.4.Given a desired error boune, we can approximate D under the forward decay model

within relative error(1+ €) using space(1/£2).

Proof. We write distinct count under forward decay as

and so focus our effort on estimating the quanfitynax,—,y(ti — L), which does not depend on the
query timet. As before,y(ti — L) can be computed on arrival of the item, and does not vary with
time. So we can write the weight of itemas #i,t) = w; = y(t — L), and the desired quantity is
Svmax,—yW;. This now corresponds exactly to the “dominance norm” deffime(26). The most
efficient method to approximate this quantity is due to Pauaah Tirthapura@7), which generalizes

technigues forcounting,the;number of distinct items. Aggblio our problem, the time cost(ﬁ(l/sz)
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(with O notation suppressing polynomial factors in fognd loge). Each update takes tin@(l) time.

The result is correct up to relative errott-Ie with high probability. O

5.5 Sampling Under Forward Decay

The aggregate computations discussed in the previousoseate each somewhat specific to a
particular goal: finding heavy hitters, quantiles, and pfire-defined aggregates. It is also useful to
generate generic summaries of large data, on which ad-fadgsesican be performed after the data has
been observed. The canonical example of such a summaryusifioem random sample: given a large
enough sample, many aggregates can be accurately estimae@luating them on the sample. We

discuss various techniques for sampling from data with ftsigetermined by forward decay functions.

5.5.1 Sampling With Replacement

In sampling with replacement, we aim to draw samples fronptigulation so that in each drawing,
the probability of picking a particular item is the same. Huw unweighted case, a single sample is
found by the simple procedure of independently retainireg’'th item in the stream (and replacing the
current sampled item) with probability/i. Under forward decay, the probability of sampling itém

should be
wit)  yti—L)
S (1) ylayti—L)

Theorem 5.5.1.We can draw a sample with replacement under forward decagmistant space, and

constant time per tuple.

Proof. A simple generalization of unweighted version suffices semda sample according to this defi-
nition. LetW = zijzly(tj —L) denote the sum of the weights observed so far in the streano, amd
including itemi. We choose to retain thiéh item as the sampled item with probabiliggt; — L) /W.

The probability that théth item is chosen as the final sample is given by

yti—L) = (1_ y(tj — '—)) y(tiv; L) = Vi?\;l B y(t{/\; L)
i i n

Wik W, j=i+1
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For a sample of sizg, we repeat this procedusdimes in parallel with different random choices in
each repetition. As in Reservoir Samplirdy), the procedure can be accelerated by using an appropri-

ate random distribution to determine the total weight ofsegfuent items to skip over.

5.5.2 Sampling Without Replacement

A disadvantage of sampling weighted items with replacerisethtat an item with heavy weight can
be picked multiple times within the sampled set, which rés/&ss about the input. This is a particular
problem when applying exponential decay, when the weighésfew most recent items can dwarf all
others. There are many formulations of weighted samplirtgawuit replacemen66). Here, we outline
two approaches that work naturally for forward decay. Bathlzased on the observation that, since
sampling should be invariant to the global scaling of wesghte can work directly witly(t — L) as the

weight of theith item.

Weighted Reservoir Sampling.In weighted reservoir sampling (WRS), a fixed sized sampmse(r
Voir) is maintained online over a stream. The algorithm affidis and Spirakis37) draws a sample
of sizek without replacement, with same probability distributianthae following (offline) procedure:
At each step, 1 <i <Kk, select an element from those that were unselected at pesteps. The prob-
ability of selecting each element at stieig equal to the element’s weight divided by the total weights
of items not selected before step

The (online) algorithm in 7) generates a “keyp; = uil/Wi for theith tuple, wheraw; is the weight
andy; is drawn randomly fromi0. .. 1]. The sample is the set &fitems with thek largest key values.
Since we can factor oyft — L) in forward decay and this does not affect the sampling pritibafor
each element, we can set the weight of each tuple y(tj — L), and obtain a sample according to the

weights in the forward decay model.

Priority Sampling. Priority sampling due to Alomt al. (4) also generates a sample of sizevith a
similar procedure: now, the priority is defined asv; /u; (wherey; is again uniform fronf0... 1]), and
the algorithm retains thieitems with highest priorities. Such a sample can be used/&agi unbiased
estimator for any selection query. The variance of thiswesior is proved to be near-optimal. For
similar reasons, priority sampling can also be used ovesttieams with any decay function within the

forward decay model.
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Theorem 5.5.2. We can maintain a weight based reservoir of stream elememsruthe WRS or
priority sampling models for any decay functions in the famivdecay model using spacgk) and

time Q(logk) to process each element.

The time bounds for the theorem follow by keeping the keysripies in a priority queue of size
k. To our knowledge, there is no way to draw such samples ovieears for general backward decay

functions without blowing up the space considerably gireidznk.

5.5.3 Sampling Under Exponential Decay

The special case of drawing a sample under exponential desmypeen posed previously, and a
partial solution given for the case when the time stampsegeential integersj. By using the forward
decay view, we are able to provide a solution for arbitrarivartimes, using space proportional to the

desired sample size.

Corollary 5.5.2.1. We can draw a sample of size k with weights based on expohdatiay in the

backward decay model using only ) space.

The corollary follows immediately from the algorithms incBen 5.5.2 and the fact shown in
Section5.3.1that forward and backward exponential decay coincide. 3thistly improves previously
known solutions, and is quite simple, relying only on theligbto draw a weighted sample. This
observation was possible by viewing the problem througHehe of forward decay; it appeared much

more complex when viewed as a backward decay problem.

5.6 Implementing Forward Decay

5.6.1 Numerical issues

A common feature of the above techniques—indeed, the kéwigge that allows us to track the
decayed weights efficiently—is that they maintain counts atiner quantities based ont; — L), and
only scale byy(t — L) at query time. But whiley(tj —L)/y(t —L) is guaranteed to lie between zero
and one, the intermediate valuesy¢f — L) could become very large. For polynomial functions, these

values should not grow too large, and should be effectivepresented in practice by floating point
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values without loss of precision. For exponential funcéiothese values could grow quite large as
new values of(ti — L) become large, and potentially exceed the capacity of comitoating point
types. However, since the values stored by the algorithmdirazar combinations of values (scaled
sums), they can be rescaled relative to a new landmark. $hhyithe analysis of exponential decay
in Section5.3.], the choice ol does not affect the final result. We can therefore multiplgheaalue
based o by a factor of exp—a (L’ — L)), and obtain the correct value as if we had instead computed
relative to a new landmark’ (and then use this nely/ at query time). This can be done with a linear

pass over whatever data structure is being used.

5.6.2 Out-of-order and Distributed arrivals

It has recently been noted that many streams in practicdicapipns do not arrive in exactly sorted
order: delays or merging multiple streams can result ire"larrivals. Under backward decay, this
can require significant effort to accommodatd;(25). But for our forward decay methods, it is quite
straightforward to accommodate, since nowhere do any gbaposed algorithms rely on items arriv-
ing in increasing order of timestamps. The only caveat iswleashould ensure that queries are posed
with time valued that are at least as big as the largest timestgrapserved so far—otherwise some
decayed weights could exceed 1. Alternately, if we allovngevhose time stamps are “in the future”
relative to the query time parametethen one can pose historical queries in the forward decajemo

Similarly, we have phrased the discussion so far in termssihgle, centralized system. But the
current trend is towards distributed, parallel systems\thin a single, multi-core, CPU). We comment
that the definition of forward decay naturally extends te tlmodel, and that all the techniques for
aggregate computation and sampling discussed apply Hgtiaréhis scenario. In particular, given the
data structures computed at each centralized site for the sl@cay function and landmark, they can
easily be merged to form a data structure summarizing thenwfithe inputs. These details are mostly

immediate from the definitions of the algorithms.

5.7 Related Work on Time Decay

Related work on computing aggregates and samples with teoeydhas focused on two cases:

slidingswindew,decayzandsether decay functions.
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Figure 5.2 Experiments on Count queries under time decay

Sliding Window. The notion of a sliding window is a natural one when procegaistream of updates:
since there are too many tuples to store (especially wheoepsing joins), simply drop the oldest
tuples. This simple definition holds much complexity, and kel to numerous papers and theses on
processing this definition (se43) and references therein). Various models have been profosthe
semantics of sliding windows. The Aurora systeb®)(defines sliding windows, which can overlap;
tumbling windows, which have no overlaps; and latched wivglavhich are tumbling with preserved
internal states. Let al. (55) propose an approach based on panes: each window is divittedanes
consisting of multiple tuples, so that each “slide” drops dfdest pane. GS typically provides tumbling
window semantics by allowing queries to be based on “timekéts” 34).

However, evaluating aggregate queries over sliding wirsdewven simple queries based on sum
and count—can require a lot of state to be maintained, singles must be stored until they expire

to_correctly compute_their _effect on the aggregate. Coresaty) there has been much research on

www.manaraa.com



135

approximate computation of aggregates under sliding wiusdosing much smaller space resources.
The earliest work focused on tracking sums and counts: bepofential Histograms (EHB6) and
Deterministic Waves42) answer these queries on a window of dizavith relative errore by keeping

a careful arrangement df(% logeN) counts and timestamps. They can extend to more complex-aggre
gates by replacing their internal counts with other datacttires such as sketches, but this causes the
space to blow up by further multiples éfand logN.

For more complex holistic aggregates, such as quantilefregqdent items, Arasu and Manku pro-
posed a generic approach with cost only a%ldxggN factor larger than the unwindowed approximate
algorithms ¥). Lee and Ting %4) reduce the space for frequent items for a fixed size windo@(%)),
the same as the unwindowed case. There has also been raeesdtiim handling cases where tuples
with timestamps do not arrive in timestamp order: resulisshzen shown for sums and couritg)(
sampling 80) and quantiles and heavy hitter25]. This flexibility comes at a cost: the bounds are
further logarithmic factors more expensive than their oedecounterparts. Likewise, methods for
sampling from a sliding window require space logarithmicéh the number of tuples in the window)

larger than the desired sample sigg (

Other decay functions: exponential and polynomial decay. Among other decay functions, expo-
nential decay is most popular, since a regular counter caegaced with an exponentially decayed
counter without increasing the (asymptotic) space costreMecently, there has been interest in ex-
tending to aggregates beyond sums and counts, includinglisgunder exponential decag)( and
guantiles and heavy hitterg4), which obtain the same space bounds as the undecayed casex-W
plain this by our model, where forward and backward modeltieahly coincide for exponential decay.
For backward decay with other functions, such as a polyniptii@ space cost is typically (much)
higher. Cohen and Strauss introduced a variety of techaidoetracking sums and counts under
backward decay2(l), with costO(%Iog N). This was extended to sampling and aggregate compu-
tation 30; 25), with similar blow-ups of poly%,log N) over the undecayed version. Our main results
show that, in the different model of forward decay, all cotaions can be done in the same asymptotic

resources as for undecayed aggregates.
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5.8 Experimental Evaluation

In this section we present the results of experimental evign of several aggregate and sampling

streaming algorithms under forward and backward decay fmode

Experimental Set-Up and Environment. All the experiments were done in the context of the GS
streaming databas@3). For simple aggregate queries (sum and count), we coulig Wrese using
the built-in GSQL aggregate functionsount () andsum(). We compared the cost of these to that
for Exponential Histograms (EHBB), with variations for both sum and count. This makes for an
interesting comparison, since, following the analysis ohénh and Straus21), the EH is capable of
approximating sum and count under any decay function (fatwabackward) specified at query time:
we can rewrite the decayed sum (resp. count) query as a suraltple scaled sliding window sum
(count) queries, each of which can be answered approxiynbyelhe same EH data structure. So we
can compare the cost of exactly computing the forward deaayyqo the best previous method, which
would approximate it. We also compare against the basefid@ectly computing the sum and count
of the data, without adjusting for time decay.

For sampling, we performed a similar comparison againeetblasses of decay: no decay, forward
decay, and backward decay. We used the traditional reseaipling approach to draw an unweighted
sample {7), and compared the cost of this to priority sampling beingpsed with exponentially
increasing weights4) and our implementation of Aggarwal’s method for samplimgler exponential
decay ). For the backward decay, all weighting is internal to theAFOmplementing the decay,
while for priority sampling, the UDAF implements standamibpity sampling and the query generates
the weights based on timestamps to feed in.

We also implemented weighted heavy hitters through the UBr¥siehanism, using C code for the
weighted version of the SpaceSaving algorithm discuss&ekation5.4.3". Here, we compared to a
method for answering sliding window heavy hitter queri2s)( As in the sum and count case, it can
be shown that the results of multiple sliding window quedas be combined to form the answer to an
arbitrary (forward or backward) decayed heavy hitter qu8ryagain, we are comparing our techniques

to approximate aggregate queries under decay with the bhestrkprevious method that could be used

10ur code is based on the routineiatp: //www.research.att.com/~marioh/frequent-itens.
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Figure 5.3 Experiments on Sampling Queries under time decay

to accomplish it. We contrast both these decayed measutbe tendecayed computation of heavy
hitters, where we can use a version of the SpaceSaving thigothat is optimized for unweighted

(unary) updates.
All the experiments were conducted on live high-speed netwraffic. We used two-CPU, dual-

core 3.0Ghz Intel Xeon server with 4Gbytes of RAM running Wwir2.4.21, however only one core
was used to run the code. In the course of the experimentsolbeng of observed network traffic
was approximately 400,000 packet/sec (about 1.8 Gbit/3&) could vary the effective stream rate
presented to the system by adjusting the flow sampling raterpged in hardware on the network

interface card.

5.8.1 Experimental Results.

Count and Sum Aggregates.These queries computed a summary (count or sum) of the t(pfee

sented as packets) sent to distinct TCP servers every mifute undecayed query is expressed in
GSQL as:
select tb, destIP, destPort, count (*)
from TCP
group by time/60 as tb, destIP, destPort
We compared the performance of sum and count queries withwegghted (backward and for-

ward)scounterpartssahhesresults are shown in Fidguge Figure5.2(a)shows the effect as we varied
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the stream rate from 100,00 packets/sec to 400,000 pasketshd observed the total CPU load. This
shows the cost of forward-decayed aggregates with quadfatly”) and exponential decay (“exp”)

is a little higher than processing without decay, while sarfipg backward decay via exponential his-
tograms (with parameter = 0.1) has appreciably higher cost, and nearly saturates thensysder
high traffic load. For undecayed and forward-decayed aggesghe GS system can optimize the query
over the system’s two-level architecture. More precistlg, system splits the query into a low-level
part performing partial aggregation using fixed-size hadie and a super-aggregation query combin-
ing partial results. Our UDAFs were written to run at the higkel only. Figure5.2(b) shows our
effort to remove this advantage for the same queries by litigpthis aggregate splitting in the system.
However, there is still an appreciable cost of backward ylevar forward decay.

This benefit becomes more pronounced as we vary the accuaaaynptere of the exponential
histograms. Recall that exponential histograms give awanthat is approximate to within relative
error 1+ &, while the other queries are computed exactly. For the saraeas as before, we decreased
€ down to 001, while the stream data rate was set to 100,000 packeisd€Eigures.2(c). The
throughput of undecayed and forward decayed aggregatessndo@lter, since they do not depend on
€. At € =0.01, the backward decayed algorithms approach 100% CPW&atiin and drop tuples.

We show the space usage per group of our methods on a logisdaigure 5.2(d). Undecayed
methods store 4 byte integers, while forward decay storggeBflnating point values. The exponential
histogram methods must track a large amount of informabbthe order of kilobytes. This is a major
factor for our queries, since they typically generate tenthousands of groups (in the query above,

there is one group for every distinct TCP destination seenriminute on a busy link).

Random Sampling. Our experiments on drawing random samples are shown in &gar The
sampling techniques are all implemented as UDAFs in C coti&hvare then called by GSQL queries
as
select tb, PRISAMP(srcIP, exp(time % 60))
from TCP
group by time/60 as tb

In this query, a sample is drawn every minute, with the larmttnsat to zero seconds within that

minutesPRISAMPreferences;the priority sampling UDAF (in this case), whipassed the (exponen-
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Figure 5.4 Experiments on Heavy Hitter queries under tintage

tial) weight of the timestamp of the tuple.

We compare computing a fixed-size reservoir sample withecay to the two algorithms designed
to draw a sample under exponential decay. FiguB{a)shows the CPU usage as the stream data
rate was varied from 100,000 to 400,000 packets per secdmd.plot shows only the cost of sample
maintenance, and not the cost of the running selection tipendich filters out TCP traffic, since
this cost is the same for all algorithms. All three algorithetale well and experience less than 10%
increase in CPU load as the data rates increases from 10@,d00,000. The CPU load is comparable
for all algorithms, meaning that we can achieve the morelflexiesult of the forward based decay
(arbitrary timestamp values, and arbitrary arrival or@gryirtually no cost over the previous solution.
Moreover, Figureb.3(b) shows that the cost of the three sampling methods all appdapéndent of

the sample size. (Note that the space used by the methodseistiedly that of size of the sample,

www.manaraa.com



140

100

80

60

40

CPU Load (%)

20

50000 100000 150000 200000

Network load (packets/second)

Weighted HH (exp) C—— Unary HH &z
Weighted HH (poly) &9 Sliding Window HH mmm

Figure 5.5 Experiments on HH performance as stream ratesvari

plus some small additional values such as stored priorityega so we do not show any plots of space
used). Note that we can obtain samples under other forwaaydenctions at the same cost, whereas

exponential decay is the only backward class model for wéffibient sampling algorithms are known.

Heavy Hitter Aggregates. Our experiments on holistic aggregate computation conateut on finding
heavy hitters. For each one minute interval, the query iflesta set of network hosts receiving the
most TCP traffic. We show the dominant cost, of maintaining shmmary under updates, and do
not plot the small final cost of extracting the heavy hitte¥§e varied the stream rate from 50,000
packets/sec to 200,000 packets/sec and observed the Rithload. For forward-decayed aggregates,
we compared both exponential and quadratic decay as before.

Figure5.5 shows that the overhead of the weighted version of the heitershalgorithm is small
compared to version optimized for unweighted updates (fYhtH"). We also see that there is little
variation as a function of the decay function. As we arguedunintroductory analysis, the sliding
window-based implementation of backward decay is much rerpensive due to the complexity of
the associated algorithms. At 200,000 packets/sec, thersygached 90% CPU utilization (nearing
instability), and further increases in the data rate catspl@ dropping. Although it allows arbitrary
decay functions to be specified at query times, this form ckward decay is simply not practical to
run in a streaming system.

This is further highlighted in FigureS.4(a)and5.4(c) which show CPU and space usage (log
scale) respectively as varies. The stream data rate here was set to 200,000 paeketsging flow

sampling on the network card. At= 0.01, the backward decayed algorithms approach 100% CPU
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utilization and further increases in data rate cause tumpsd The CPU usage of the weighted algo-
rithms implementing forward decay is fairly robust to théueaof €, and the space depends ofel
(the space is still of the order of kilobytes, but one tydicaixpects such aggregate queries to be run
over somewhat fewer groups than sum or count queries). [Natdhe space of the backward decayed
approach does not vary wittr this is because it does not have much pruning power overuhe n
ber of tuples presented, and so it is effectively storingrgedraction of the total input. This is also
unsustainable in a high-throughput streaming system.

Lastly, Figuress.4(b)and5.4(d)show the same experiments performed over UDP data. Here, we
took the same query over only the UDP traffic (specified byragldin additional selection to the query).
The stream data rate was set to 170,000 packets/sec, whileghof the experimental settings were
the same as in previous experiments. We see that the belwhifa algorithm is virtually unchanged
despite the different characteristics of UDP data. The espaquired by Sliding Window approach
is slightly lower, but still orders of magnitude higher thidmat for forward decay (about a megabyte

compared to 1IKB—6KB, depending @

5.9 Concluding Remarks

In this chapter, we have proposed a new class of time decastrieaming systems, based on a
forward view of the decay. It is effective to implement inestming systems, and has a low overhead
compared to processing undecayed queries, making it muoh attpactive than prior algorithms.

One feature of the decay is that it fits easily into distridusystems seeing different parts of an
input that is to be combined. It will be interesting to studywhto integrate this model of time decay
into not just distributed streaming systems, such as Bisréd| but also the new generation of popular

distributed processing systems such as MapRed®&)eHladoop 47) and Sawzall§8).
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CHAPTER 6. Conclusion

In this thesis, we proposed the concept of asynchronousstia@ms. We showed asynchronous
data stream is a more natural model for the streaming datsnigted through distributed systems than
the previous synchronous data stream model, and it is treref robuster model for distributed data
stream monitoring.

We focused on the time-decayed data aggregation over asyrls data streams. We showed
that previous work on synchronous data stream cannot bellyiextended for the asynchronous data
stream. We proposed the first time and space efficient skeetoheummarizing multiple asynchronous
data streams over timestamp sliding windows. The sketdlriisdr improved so that it can be used for
general purposed network streaming data monitoring in anwanication-efficient way.

Our techniques for asynchronous data stream processing futher explored in its usage for
correlated data aggregation over data streams. We not mdgdthe open problem of sliding window
based correlated data aggregation, but also did the firspimansive study on the correlated data
aggregation for asynchronous data streams under anyaaybtime decay functions. We proposed
time and space efficient algorithms for the easy cases, andeshlarge space lower bounds for the
hard cases.

We proposed forward-decay, a new time decay model for dowightiag old elements in the
stream. We showed that forward-decay captures a varietyefdecay functions in the usual backward
decay model. We showed forward decay significantly simglifie data aggregation and sampling over
data streams by providing much simpler and more efficierdralgns.

We conclude this thesis with the following future directon
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6.1 Future Work

In general, all the problems that have been studied usingytinehronous data stream model should
be re-investigated when the asynchrony in the data streaoni®s a matter. Although in some scenar-
ios a solution for the synchronous stream case can be us#tefasynchronous stream case by paying
extra cost in the time and space, it is of research interesthvehn this extra cost can be waived. In other

scenarios, novel techniques become a must. We list a fewcbfesxamples here.

Population variance. Maintaining a good estimate for the population variance sliding windows of

a synchronous stream is well studidd;(80) and optimal solutions exist, while the same problem under
the asynchronous stream model still remains open. Histodgeghniques used in the synchronous
stream case highly relies on the sequential order in theatatel, and it is not known how to extend

it for the asynchronous stream. Similarly, it is not knownvtto use sampling technique to maintain a

probabilistically accurate estimate for the variance @ligiing windows of an asynchronous stream.

Tighter bound for basic counting. Basic Counting over a sliding window is a fundamental probie
stream processin@§). The known best space lower boundflog?w/ ¢) bits, wherew is the window
size, is optimal for both deterministic and randomized atbms in the synchronous stream case.
The current best space upper bound for asynchronous stee@flog®w/¢)) bits for deterministic
algorithms 80) and O(log?w/£?) bits for randomized algorithm&’9). Closing the gap between the

lower and upper bounds is an open problem.

Tighter bound for heavy hitters The best space upper bound for maintaining heavy hittensshide

ing windows isO(1/€) words 64) for the synchronous stream case. The idea is to use the Ktsia
Gries algorithm §0) but replace the simple counter with a sketch counter @alleounter in 64)),
which approximately tracks the number of each distinct #atuthe window. An observation is that
the sketch counter only needs to be of additive error guaeariiowever) -counter does not work in
the asynchronous stream setting. The sketch countersneelsig 30; 79) for asynchronous streams
are also over-killed since they have a relative error guaemrand thus are too complex and inefficient
in space. Finding a more space efficient sketch counter feic munting over sliding windows in

asynchronous streams may lead to more efficient and simiglaritams for heavy hitters.
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Semi-asynchronous streamsSo far our asynchronous data stream model does not assunppean u
bound in the transmission delay of any data element. Intye#lithe data element is delayed at any
intermediate device for longer than a preset threshold,litbe discarded. Therefore, the real data
stream observed by the processor has an upper bound in ¢ineylatf its data arrival. We call such
data streams, where the data arrival latency is boundederasasynchronous streams. By taking
advantage this latency bound, we may improve the performan@xisting algorithms which were

designed for asynchronous stream processing.
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